Chapter1 Python入门

NumPy

对应元素计算(element-wise)

import numpy as np
x=np.array([1.0,2.0,3.0])
y=np.array([2.0,3.0,4.0])
x+y

广播

import numpy as np
x=np.array([[1,2],[3,4]])
y=np.array([10,20])
x*y
______
array([[10, 40],
       [30, 80])

访问元素

索引

for循环

import numpy as np
x=np.array([[51,55],[14,19],[0,4]])
for row in x:
  print(row)
  ________
[51 55]
[14 19]
[0 4]

转换为数组

import numpy as np
x=np.array([[51,55],[14,19],[0,4]])
x=x.flatten()#转换为一维数组
print(x)
print(x[np.array([0,2,4])]) #x[np.array([0,2,4])]获取索引为0 2 4的元素
print(x>15)
print(x[x>15]) #抽取大于15的元素
#[]内是需满足的条件
____________
[51 55 14 19  0  4]
[51 14  0]
[ True  True False  True False False]
[51 55 19]

Matplotlib

绘制图形

在这里插入图片描述

显示图像

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值