【昇腾】基于Atlas 200I DK A2开发者套件从0到1免编译快速在昇腾20T开发者套件上适配sampleYOLOV7MultiInput_20250714

基于Atlas 200I DK A2开发者套件从0到1免编译快速在昇腾20T开发者套件上适配sampleYOLOV7MultiInput_20250714
###############################################################################
硬件:Altlas 200I DK A2(8T版本)
Altlas 200I DK A2开发者套件实物图:
在这里插入图片描述

###############################################################################

一、制卡

Altlas 200I DK A2开发者套件通过
https://www.hiascend.com/document/detail/zh/Atlas200IDKA2DeveloperKit/23.0.RC2/qs/qs_0005.html选择在线烧录Ubuntu22.04的镜像版本制卡后,进行以下操作

二、开发者套件具体的版本信息如下:

OS版本:Ubuntu 22.04 LTS Arm64
固件与驱动版本:23.0 RC3
CANN版本:7.0.RC1

三、快速适配

本样例为在昇腾20T 开发者套件上快速适配跑yolov7x的sample,主要参考昇腾原厂sampleYOLOV7MultiInput的sample
确保设备能联网,将已经编译好x264、ffmpeg、opencv的压缩tmp_yolov7x_x264_ffmpeg_opencv_Atlas_200I_DK_A2_build_ok_20250713.tgz文件
放到开发者套件的**/home/HwHiAiUser/work/**下完成以下操作:
其中,tmp_yolov7x_x264_ffmpeg_opencv_Atlas_200I_DK_A2_build_ok_20250713.tgz网盘链接: https://pan.baidu.com/s/1d99ZlLAPDCFlPboMzyUb9w?pwd=b3ix 提取码: b3ix

mkdir -p /home/HwHiAiUser/work/
cd /home/HwHiAiUser/work/
tar xvf tmp_yolov7x_x264_ffmpeg_opencv_Atlas_200I_DK_A2_build_ok_20250713.tgz

设置环境变量:


                
参考资源链接:[华为Atlas 200IDK上的PIDNet语义分割模型部署实战](https://wenku.csdn.net/doc/6b327spuym?utm_source=wenku_answer2doc_content) 要在昇腾AI开发者套件支持的Atlas 200I DK上部署PIDNet语义分割模型,需要按照以下步骤进行操作:(步骤、代码、mermaid流程图、扩展内容,此处略) 首先,需要对Atlas 200I DK开发板进行初始化配置,确保其硬件性能得到充分发挥。接着,准备用于训练PIDNet模型的数据集,这包括数据采集、预处理、标注等环节。一旦数据集准备就绪,就可以在训练环境中训练PIDNet模型,并对模型进行优化。 模型训练完成后,下一步是模型转换。在这个过程中,需要将训练好的模型转换为适合Atlas 200I DK的格式。华为昇腾AI开发者套件提供了相应的工具来完成这一任务,确保模型能够被开发板上的硬件高效执行。 在模型转换后,编写部署脚本成为关键。脚本需要调用转换后的模型,并处理输入的视频数据,实现语义分割的功能。通过实验评估,可以验证模型在Atlas 200I DK上的运行速度、资源占用情况以及分割精度。 整个流程不仅需要对深度学习框架和编程技术有所掌握,还需要对昇腾AI开发者套件的使用有深入理解。具体操作过程中可能涉及到的AI编程框架、硬件特性、以及模型优化技巧,都可以在《华为Atlas 200IDK上的PIDNet语义分割模型部署实战》一书中找到详细说明。这本书不仅覆盖了当前问题的解决方案,还对相关的AI核心软硬件技术、编程框架和深度学习原理进行了全面的介绍,是AI开发者进行视觉模型部署不可多得的学习资源。 参考资源链接:[华为Atlas 200IDK上的PIDNet语义分割模型部署实战](https://wenku.csdn.net/doc/6b327spuym?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

广东小6

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值