在机器学习领域,模型泛化能力始终是核心研究课题。传统观点认为,模型在训练数据分布范围内的表现(内推)与分布外的表现(外推)存在本质区别,然而最新研究对这一二分法提出了挑战。本文将系统探讨内推与外推的概念界定、理论争议、技术挑战及前沿解决方案,特别关注Transformer架构的长度外推创新、LeCun团队对高维空间外推普遍性的实证研究,以及知识图谱中的外推技术,为你提供对这一关键问题的全面而深入的理解。
内推与外推的概念辨析
在机器学习模型的训练与评估过程中,“内推”(interpolation)与“外推”(extrapolation)构成了描述模型泛化行为的两个基本概念。传统定义认为,内推是指当测试样本的输入处于训练集输入范围内时,模型的预测过程;而外推则指对超出训练数据范围的输入进行预测。这一区分看似直观,却在实践中引发了诸多理论争议和技术挑战。
从数学角度看,内推可以理解为在数据集的凸包(Convex Hull)内部进行的预测,而外推则是在凸包之外的操作。然而,随着深度学习模型处理的数据维度急剧增加(通常>100维),LeCun团队的最新研究表明,在高维空间中几乎所有预测本质上都是外推,因为新样本极不可能位于训练数据的凸包内。这一发现动摇了传统机器学习评估范式的根基,也对模型开发实践提出了深刻质疑。
内推与外推的区分不仅具有理论意义,更直接影响模型的实际应用效果。以商业预测为例,当使用历史销售数据(如70-90华氏度下的柠檬水销量)预测已知温度范围内的销售额时属于内推,相对可靠;而预测极端温度(如65°F或95°F)下的销量则属于外推,结果可能严重偏离实际——顾客在酷热天气可能选择呆在家中而非购买更多柠檬水。这种外推风险在金融、医疗等关键领域尤为突出。
当前,学术界对内推与外推的认知正在经历范式转变。一方面,传统观点强调内推是模型可靠泛化的基础,外推则应尽量避免;另一方面,新兴研究则揭示,在高维空间中,模型本质上一直在进行外推,且这种外推能力恰恰是现代深度学习强大性能的来源。这种认知转变要求我们重新审视模型评估方法,并探索更适应现实需求的外推技术。
本文将首先深入分析内推与外推的理论基础与争议,然后探讨当前主流模型(特别是Transformer)在外推方面的技术挑战与创新方案,最后展望这一领域的未来发展方向,为研究者和实践者提供系统的参考框架。
内推与外推的理论基础与争议
内推与外推的数学界定长期依赖于几何概念中的凸包理论。根据这一理论,给定一个数据集,如果一个数据样本位于该数据集的凸包(Convex Hull)内,则属于内插;若在凸包之外,则属于外推。这种界定在低维空间中直观且有效,然而当面对高维数据时却面临严峻挑战。尼克(Nick)等学者在讨论中指出:“convexity的判定非常简单,复杂性很低”,但这一简单性在高维空间中可能失去实际意义。
LeCun团队2021年的开创性研究彻底颠覆了传统认知。他们通过理论分析和大量实验证明,在高维空间(>100维)中,无论数据流形的基本本征维数(intrinsic dimension)如何,内插几乎不会发生。这一结论基于严密的数学推导:为了保持新样本处于内插区域的恒定概率,训练集大小必须随数据维度d呈指数增长。在实际应用中,这意味着对于图像、文本等高维数据,即使流形本征维度较低,模型面对新样本时本质上总是在进行外推。
不同维度下内插概率随训练集大小的变化趋势
数据维度(d) | 保持恒定内插概率所需的训练集增长 | 实际应用启示 |
---|---|---|
低维(d<10) | 多项式增长 | 传统内推/外推区分有效 |
中维(10<d<100) | 超线性增长 | 内推区域迅速缩小 |
高维(d>100) | 指数增长 | 几乎所有预测都是外推 |
这一发现对机器学习实践产生了深远影响。首先,它表明当前使用和研究的模型基本都是外推的,而非传统认为的内插。其次,鉴于这些模型在诸多任务中实现了超越人类的性能,外推机制本身并不一定是需要避免的缺陷,但也不能简单地将其等同于泛化性能的指标。这解释了为什么在机器学习竞赛中单纯优化测试集指标(“刷榜”)可能无法反映模型的真实应用价值。
从哲学角度看,白硕等学者提出了更为根本的质疑:“啥叫外啥叫内?彼此互为‘外’的,在一个巧妙的映射下就成了‘内’。基因组和字符串,当初谁知道是外还是内呢?”这种观点强调内推与外推的区分具有相对性,取决于我们选择的表示空间。鲁为民进一步用数学语言阐述:“如果用数学语言来描述,给定一个数据集,如果一个数据sample在该数据集的Convex Hull之内是内插,在Convex Hull之外是外推”。
流形学习视角为这一问题提供了更深层的见解。白硕指出:“把原始数据先变到某个流形上,再做凸包和内插,会精准很多。代价就是要去搞定流形。”这表明,通过精心设计的特征变换,可以将原本困难的外推问题转化为相对可控的内推问题。例如,在自然语言处理中,词嵌入(embedding)技术将离散符号映射到连续向量空间,鲁为民评论道:“像Embedding这样试图将离散问题近似为连续问题,将问题简化到利用目前的手段可解”。
这些理论争议和见解对实践有着直接指导意义。它们提示研究者:
-
在高维数据场景下,应重新审视传统基于内推假设的模型评估方法;
-
需要开发不依赖于内推/外推简单二分的新型泛化性能指标;
-
特征表示学习(如embedding)的质量可能比内推/外推的区分更为关键;
-
模型设计应更关注如何实现“合理的外推”而非徒劳地追求内推。
这些认识正在重塑机器学习的研究范式,也为后续技术发展提供了理论基础。
模型外推的技术挑战与Transformer的创新
长度外推问题在Transformer架构中表现得尤为突出,成为制约其处理长序列能力的关键瓶颈。传统观点认为Transformer无法处理超长序列主要是因为Self Attention的二次复杂度,但更本质的原因在于其长度外推性(Length Extrapolation)的局限——当输入序列明显超过训练长度时,模型效果通常会严重下降(扩展阅读:Transformer 中的注意力机制很优秀吗?-CSDN博客、来聊聊Q、K、V的计算-CSDN博客、初探注意力机制-CSDN博客)。这一现象在大型语言模型(LLM)时代显得尤为突出,因为我们总希望模型能够处理任意长的文本,但又不可能把训练样本的长度拉到任意长。
针对这一挑战,追一科技的研究团队提出了一种创新的混合窗口-全局注意力机制(Hybird Window-Full Attention,HWFA)。该方法的核心思想是:前面N-1层使用Window Attention获得局部n-gram特征,最后一层替换为带缩放因子的Full Attention来检索和整合这些特征。具体实现包括两个关键设计:(1)前面N-1层使用Window Attention+RoPE(旋转位置编码),满足约束条件;(2)第N层使用带缩放因子的Full Attention但不使用RoPE。实验证明,这种设计在保持全局依赖能力的同时,显著提升了模型的外推性能。
HWFA与其他外推方法的对比
方法类型 | 代表技术 | 优点 | 局限性 |
---|---|---|---|
注意力局部化 | Local Attention, Window Attention | 计算效率高,指标改进明显 | 无法实现全局依赖 |
位置扰动增强 | 随机位置扰动 | 可能保留全局依赖 | 仅适用于Encoder模型 |
混合注意力(HWFA) | Window+Full Attention组合 | 保留全局依赖,适合生成模型 | 训练效果略低于标准设计 |
HWFA方法的成功揭示了外推技术设计中的几个关键洞见:首先,分而治之的策略有效——将表征、预测、合成三个部分分解处理;其次,迭代预测可以降低模型同时预测大范围未知区域的难度;最后,模型结构组合(如CNN与Transformer联合)能充分利用不同架构的优势。这些原则不仅适用于序列长度外推,也对其他外推场景具有启发意义。
在图像处理领域,内补与外推问题同样面临挑战。传统方法多分别对待内补与外推问题,且多采用CNN构建,受到视野局部性限制。针对这些问题,最新研究提出按照分而治之思想联合CNN与Transformer构建深度神经网络,将解决过程分解为“表征、预测、合成”三个部分:表征与合成采用CNN完成,充分利用其局部相关性;核心预测由Transformer实现,发挥其全局上下文关系建模能力。这种方法在多项指标上超越对比方法,显示了统一框架处理内补与外推问题的潜力。
外推问题在大批量训练场景下也表现独特。研究表明,大批量随机梯度下降法容易陷入训练和测试函数的尖峰最小值,导致泛化能力下降,而小批量方法表现更好。为解决这一问题,Ghost Batch Normalization等算法被提出,可显著减少泛化差距而不增加权重更新数量。这些发现提示我们,外推性能不仅与模型架构有关,也与优化策略紧密相连。
韩国化工研究所的Gyoung S.Na和Hyunju Chang教授团队在热电材料预测中的工作展示了描述子设计对外推的重要性。他们发现传统机器学习方法在外推时准确率迅速降低(值小于0.2),而通过创新的系统识别材料描述子(SIMD),将外推预测的
值显著提高到0.7。这一案例验证了“对输入条件的描述越准确,模型就越接近客观现实,从而外推结果也就越可靠”的原则,为跨领域的外推问题提供了重要参考。
这些技术进步共同描绘了解决外推挑战的多维路径:架构创新、优化策略改进、描述子设计,以及不同模块的智能组合。它们不仅解决了实际应用中的具体问题,也为理解模型泛化机制提供了新的视角。
知识外推:处理未知元素的专门技术
知识图谱嵌入(KGE)方法在应对未知实体或关系时面临独特挑战,催生了专门的知识外推(Knowledge Extrapolation)技术。与传统机器学习的外推问题不同,知识图谱中的外推需要处理符号化的离散实体和关系,这对连续优化为基础的嵌入方法提出了特殊要求。近年来,这一领域的研究迅速增长,形成了系统化的方法体系和分类框架。
根据浙江大学和爱丁堡大学团队在IJCAI 2023发表的综述,知识外推可分为实体外推和关系外推两大类。实体外推处理测试集中出现训练时未见过的实体,而关系外推则处理未见过的关系。这种分类反映了知识图谱中两类基本元素的差异,也对应着不同的技术路线。
实体外推的主流方法包括三类代表性技术:
-
基于实体编码的方法:放弃传统的固定嵌入表,转而学习编码器,为测试阶段的新实体生成嵌入。这类方法又可根据支持信息类型细分为从结构信息编码(如LAN、MorsE模型)和从其他信息编码(如文本描述)。
-
基于子图预测的方法:将三元组中的头实体和尾实体一起处理,编码它们之间的关系子图(如GraIL、CoMPILE模型)。这种方法假设子图语义可预测关系,且子图结构与具体实体无关,因而能外推到未知实体。
-
基于规则学习的方法:从知识图谱中学习逻辑规则(如AMIE、Neural LP模型),利用规则不依赖特定实体的特性实现外推。这类方法结合了符号系统的可解释性和神经网络的灵活性。
关系外推同样发展出多种技术路径,其中两种尤为突出:
-
基于关系编码的方法:类似于实体编码,但针对关系设计编码器。MetaR、ZSGAN等模型根据结构信息或其他信息(如关系描述)为未知关系生成嵌入。
-
基于实体对匹配的方法:对未知关系的头实体和尾实体对进行编码,然后与查询集中的实体对匹配(如GMatching、FSRL模型)。这种方法回避了直接表示关系的困难,转而利用实体对的模式识别关系。
知识外推领域的评估范式也形成特色。测试集被构建为支持集(support set)和查询集(query set)的组合:支持集提供关于未知元素的信息(如结构或文本特征),查询集则用于评估链接预测能力。这种设定模拟了现实场景中模型利用有限背景信息推理未知元素的情境,比传统的随机划分训练测试集更能反映实际应用需求。
方法类别 | 核心技术 | 适用场景 | 优势 | 局限 |
---|---|---|---|---|
实体编码 | LAN, MorsE | 未知实体有结构/文本信息 | 灵活生成新实体嵌入 | 依赖支持信息质量 |
子图预测 | GraIL, CoMPILE | 未知实体有关联子图 | 捕捉结构模式 | 计算复杂度高 |
规则学习 | AMIE, Neural LP | 存在可提取的逻辑规则 | 可解释性强 | 规则覆盖度有限 |
关系编码 | MetaR, ZSGAN | 未知关系有描述信息 | 直接建模关系 | 需要关系元信息 |
实体对匹配 | GMatching, FAAN | 未知关系有实例对 | 避免关系表示 | 依赖实体对数量 |
知识外推技术的未来发展面临多个前沿方向。多模态信息(如图像、音频)的利用可以丰富未知元素的表示;时间感知的外推方法可处理动态知识图谱;批量学习和终身学习设定下的外推更贴近实际应用场景。特别值得注意的是,当前研究多单独处理实体或关系外推,而实际应用中两者常同时出现,这要求开发更统一的解决方案。
知识外推的研究不仅解决了知识图谱领域的特定问题,也为更广泛的机器学习外推挑战提供了借鉴。其处理离散符号的方法、利用辅助信息的策略,以及结合符号与神经技术的思路,对其他领域的类似问题具有启发意义。随着知识图谱在推荐系统、问答系统等应用中的普及,知识外推技术的重要性将进一步提升。
应用启示与未来展望
内推与外推的认知重构正在深刻影响机器学习实践。传统观点认为内推可靠而外推危险,建议将外推问题转化为内推(通过收集更多数据使“无人区”变成“有人区”)。然而,LeCun团队的发现迫使我们重新思考——在高维空间中,几乎所有预测本质上都是外推。这一认识转变要求开发者调整模型评估策略,不再简单依赖训练集-测试集划分来评估泛化能力,而需要设计更符合实际应用场景的评估协议。
在实际应用中,外推风险需要特别关注。以商业预测为例,基于70-90°F温度数据的柠檬水销售模型,在预测77°F时(内推)相对可靠,而预测95°F时(外推)可能完全错误——极端高温下顾客反而减少外出。这种非线性响应在金融、医疗、气候等领域尤为常见。开发者应当:(1)明确标注预测的内推/外推性质;(2)对外推预测施加额外验证;(3)考虑集成领域知识约束外推范围。
从技术发展角度看,解决外推挑战存在三条主要路径:
-
模型结构创新:如Transformer中的混合注意力机制(HWFA),通过组合局部与全局注意力平衡内插效果与外推能力;图像处理中CNN与Transformer的联合架构,分离表征、预测、合成阶段。
-
训练策略优化:如大批量训练中的“Ghost Batch Normalization”减少泛化差距;后局部SGD方法提高泛化性能;迭代预测策略降低大范围外推难度。
-
表示学习改进:如热电材料预测中的系统识别描述子(SIMD);知识图谱中基于编码的实体/关系外推方法;以及更一般的流形学习技术,将数据映射到更适合内推的表示空间。
未来研究的关键方向包括但不限于:
-
高维空间中的泛化理论:需要建立超越传统内推/外推二分法的理论框架,解释为什么某些外推成功而其他失败。LeCun团队的工作是重要起点,但需要更系统的理论构建。
-
外推的量化评估指标:当前缺乏统一的外推能力评估标准。需要开发能区分“良性外推”与“恶性外推”的指标,可能结合预测置信度、局部流形几何特性等多维信息。
-
多模态外推技术:如知识图谱领域探索的,结合文本、图像等多模态信息增强外推能力。这在少样本学习场景尤为重要。
-
领域知识融合:类似AlphaZero利用游戏规则生成自对弈数据,如何系统地将领域知识转化为约束或数据增强,提升外推合理性。
-
动态外推系统:能够持续学习并调整外推策略的终身学习系统,应对现实世界中不断变化的分布。
从更广阔的视角看,内推与外推的讨论反映了机器学习从数据驱动到知识整合的范式演进。纯数据驱动的方法“by nature就是无解的”,而结合先验知识与模型结构复杂化可能是前进方向。如研究者所言:“不能强人所难,巧妇难为无米之炊。米就是数据。”但当数据有限时,我们需要更智能地利用数据和知识。
最终,内推与外推的界限可能如白硕所言是相对的:“彼此互为‘外’的,在一个巧妙的映射下就成了‘内’”
代码示例
外推
1. 线性外推 vs. 插值(Python)
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
# 构造数据(温度 vs. 柠檬水销量)
x_train = np.array([70, 75, 80, 85, 90]) # 训练数据范围
y_train = np.array([50, 65, 80, 95, 110]) # 销量
# 测试数据(包含内推和外推点)
x_test = np.array([65, 77, 95]) # 65和95是外推,77是内推
# 线性外推(使用线性回归)
coefficients = np.polyfit(x_train, y_train, 1)
y_linear_extrap = np.polyval(coefficients, x_test)
# 插值法(样条插值)
f_interp = interp1d(x_train, y_train, kind='cubic', fill_value='extrapolate')
y_interp_extrap = f_interp(x_test)
# 可视化
plt.figure(figsize=(10, 6))
plt.scatter(x_train, y_train, color='blue', label='Training Data')
plt.plot(x_test, y_linear_extrap, 'r--', label='Linear Extrapolation')
plt.plot(x_test, y_interp_extrap, 'g-.', label='Cubic Spline Interpolation+Extrapolation')
plt.axvspan(70, 90, alpha=0.1, color='blue', label='Interpolation Range')
plt.xlabel('Temperature (°F)')
plt.ylabel('Lemonade Sales ($)')
plt.legend()
plt.title('Interpolation vs. Extrapolation in Sales Prediction')
plt.grid(True)
plt.show()
-
蓝色区域为内推范围(70–90°F),红色虚线为线性外推,绿色点线为插值法的外推结果。
-
插值法在外推时更平滑,但极端值(如95°F)可能不符合实际趋势。
2. RoPE位置编码的外推改进(PyTorch示例)
import torch
import math
def apply_rope(x, dim, max_seq_len=2048, scale=1.0):
"""RoPE位置编码(带线性内插缩放)"""
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
t = torch.arange(max_seq_len * scale, device=x.device) / scale # 位置缩放
freqs = torch.einsum('i,j->ij', t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()[None, None, :, :]
sin = emb.sin()[None, None, :, :]
return x * cos + rotate_half(x) * sin
def rotate_half(x):
"""旋转半部分特征"""
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
# 示例:输入序列长度为4096(外推)
x = torch.randn(1, 8, 4096, 64) # (batch, heads, seq_len, dim)
x_rope = apply_rope(x, dim=64, max_seq_len=2048, scale=2.0) # 缩放至2048内
print("RoPE with Position Interpolation:", x_rope.shape)
-
scale=2.0
将4096的位置索引线性压缩到2048范围内,避免直接外推的性能下降。 -
对比NTK-aware方法,可通过调整
inv_freq
的基数(如base=10000 * alpha
)进一步优化外推。
3. 克里金外推(地质统计)
from pykrige import OrdinaryKriging
import numpy as np
import matplotlib.pyplot as plt
# 模拟井位数据(经纬度和声波慢度)
lon = np.random.uniform(1.5, 4.5, 50)
lat = np.random.uniform(57.5, 62.0, 50)
dtc = np.random.normal(100, 10, 50) # 声波慢度
# 克里金插值+外推
OK = OrdinaryKriging(lon, lat, dtc, variogram_model='exponential')
grid_lon = np.linspace(1.0, 5.0, 100) # 外推到更大范围
grid_lat = np.linspace(57.0, 63.0, 100)
z, ss = OK.execute('grid', grid_lon, grid_lat)
# 可视化
plt.contourf(grid_lon, grid_lat, z, levels=20, cmap='viridis')
plt.scatter(lon, lat, c='red', s=30, label='Well Data')
plt.colorbar(label='DTC (us/ft)')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Kriging Extrapolation for Rock Physics Data')
plt.legend()
plt.show()
-
红色点为已知井位数据,彩色区域为克里金法推断的全局分布(包含外推区域)。
-
ss
变量可计算外推区域的不确定性(如高纬度地区误差可能增大)。
内推
1. 数值插值(SciPy)
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
# 训练数据(已知范围内)
x_train = np.array([0, 2, 4, 6, 8, 10])
y_train = np.array([1, 4, 9, 16, 25, 36]) # y = x^2
# 内推测试点(在训练范围内)
x_test = np.array([1, 3, 5, 7, 9])
# 线性插值
f_linear = interp1d(x_train, y_train, kind='linear')
y_linear = f_linear(x_test)
# 三次样条插值(更平滑)
f_cubic = interp1d(x_train, y_train, kind='cubic')
y_cubic = f_cubic(x_test)
# 可视化
plt.figure(figsize=(10, 6))
plt.scatter(x_train, y_train, color='red', label='Training Data')
plt.plot(x_test, y_linear, 'b--', label='Linear Interpolation')
plt.plot(x_test, y_cubic, 'g-.', label='Cubic Spline Interpolation')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('Interpolation within Training Range')
plt.grid(True)
plt.show()
-
红色点为训练数据,蓝色虚线为线性插值,绿色点线为更平滑的三次样条插值。
-
所有测试点均在训练范围内(0 ≤ x ≤ 10),属于严格内推。
2. 机器学习模型的内推(Scikit-learn)
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
# 生成数据(确保测试集在训练分布内)
np.random.seed(42)
X = np.random.rand(100, 1) * 10 # 特征:0-10
y = X.squeeze() ** 2 + np.random.normal(0, 2, 100) # y = x^2 + 噪声
# 划分训练集和测试集(确保测试集是内推)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = RandomForestRegressor(n_estimators=100)
model.fit(X_train, y_train)
# 内推预测
y_pred = model.predict(X_test)
# 评估内推性能
from sklearn.metrics import r2_score
print(f"R² Score (Interpolation): {r2_score(y_test, y_pred):.3f}")
# 可视化
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.scatter(X_test, y_pred, color='red', label='Interpolation Prediction')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('Random Forest Interpolation')
plt.show()
-
测试集数据完全来自训练分布的同一范围(
X_test ∈ [0, 10]
),模型表现通常较好(R²接近1.0)。 -
如果测试数据超出范围(如x=15),则属于外推,性能可能下降。
3. 时间序列内推(ARIMA)
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
# 生成时间序列数据(内推范围:t=0-100)
t = np.arange(100)
y = 0.5 * t + np.sin(t) + np.random.normal(0, 0.5, 100)
# 训练ARIMA模型(内推预测t=80-100)
model = ARIMA(y[:80], order=(2, 1, 1))
model_fit = model.fit()
# 内推预测(在训练时间范围内)
y_pred = model_fit.predict(start=80, end=99)
# 可视化
plt.plot(t[:80], y[:80], 'b-', label='Training Data')
plt.plot(t[80:], y[80:], 'g-', label='True Values (Interpolation Range)')
plt.plot(t[80:], y_pred, 'r--', label='ARIMA Interpolation Prediction')
plt.xlabel('Time')
plt.ylabel('y')
plt.legend()
plt.title('Time Series Interpolation with ARIMA')
plt.show()
-
模型仅在历史时间窗口(t=0-80)训练,预测t=80-100(内推)。
-
如果预测t=100+(外推),误差可能显著增大。
4. 图像内推(OpenCV)
import cv2
# 加载图像
image = cv2.imread('input.jpg', cv2.IMREAD_COLOR)
h, w = image.shape[:2]
# 内推缩放(缩小再放大到原尺寸)
scaled_down = cv2.resize(image, (w//2, h//2), interpolation=cv2.INTER_CUBIC)
scaled_up = cv2.resize(scaled_down, (w, h), interpolation=cv2.INTER_CUBIC)
# 对比原图与内推结果
cv2.imshow('Original', image)
cv2.imshow('Interpolated (Down->Up)', scaled_up)
cv2.waitKey(0)
cv2.destroyAllWindows()
-
INTER_CUBIC
在图像缩放时保留更多细节(相比线性插值INTER_LINEAR
)。 -
由于操作在像素空间内,没有引入训练数据外的信息,属于严格内推。