《Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks》论文阅读

文章地址:https://arxiv.org/pdf/1909.03477

文章内容

  虽然注意力机制和卷积神经网络CNN具有对齐方面及其上下文词的固有能力,其被广泛用于基于方面的情感分类。然而上述方法却很难捕获或解释文本中的句法依赖和长依存关系,比如注意力机制倾向于增加目标词周围词的权重,所以可能会将错误的词作为情感判断的线索。为了解决上述问题,作者基于句子依赖树构建了图卷积神经网路(GCN),以利用句法信息和单词依赖关系,并提出了一个新的面向方面的情感分类框架,通过实验证明了其有效性。除此之外,该篇文章也是第一个将GCN用于该项任务当中的。

文章模型

通过LSTM进行词嵌入

  方面级情感分析的任务在于分析句子中给定的目标实体的情感。对于嵌入,作者是将每个单词映射到一个低维的向量矩阵,然后通过双向LSTM学习句子的上下文表示。

获取面向方面的特征

  作者通过在句子的句法依存树上应用多层图卷积,并在其顶部施加特定于方面的掩蔽层,来获得面向方面的特征

依赖树上的图卷积

  作者首先通过spacy获取句子的依赖表示,并将其转化为邻接矩阵的形式,然后输入到GCN中进行图卷积操作。
在这里插入图片描述
  除此之外,作者还对GCN输出的隐藏层向量应用位置感知转化,也就是根据句子中其他词离方面词的距离乘一个权重,公式如下:
在这里插入图片描述

特定于方面的掩蔽策略

  在这里,作者将GCN输出中对于与aspect无关的单词的隐藏层向量输出全部掩蔽掉,即全部赋值为0。

方面感知注意力机制

  这里作者将GCN的输出和原始的上下文向量做点积注意力机制,从而检索与方面词语义相关的重要特征,公式如下:
在这里插入图片描述
  最终表示如下:
在这里插入图片描述

情感分类

  作者将上述输出经过一层线性层后输入到softmax进行分类公式如下:
在这里插入图片描述
  最终训练就是用的交叉熵损失和L2正则化:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值