《Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble》笔记

文章地址:https://aclanthology.org/2021.naacl-main.231/

文章内容

  图神经网络被广泛用于方面级情感分析任务。但是现有的研究大多只利用依赖关系而不考虑其依赖类型,并且缺乏有效的机制区分不同卷积层中所学习到的重要知识。为了解决这些上述问题,作者提出了一种类型感知的图神经网络(T-GCN)。在T-GCN中,作者用注意力机制区分图中的不同的边,并提出注意力集成 来综合学习T-GCN中不同的层的信息。

文章方法

类型感知图构建

在这里插入图片描述

  作者通过一个工具包获得依赖树三元组在这里插入图片描述其中r代表单词i和单词j之间的依赖关系,所以作者构造了2个矩阵,一个为邻接矩阵A,代表两个单词之间是否有连接,1代表有,0代表没有,类型矩阵R代表他们依赖边的类型,然后作者使用了一个转移矩阵将R转化为他们的嵌入E。

T-GCN

  对于类型感知图,作者提出了一种L层T-GCN,对于每一层,作者将注意力应用于图中的边,通过它们对ABSA任务的贡献来对其进行加权,并且将l-1层GCN的输出与它们的依赖类型嵌入连接在一起,公式如下:
在这里插入图片描述
  然后作者通过如下公式计算每条边的权重:
在这里插入图片描述
  然后作者将类型嵌入e与l-1层的输出的维度对其并相加,公式如下:
在这里插入图片描述
  最后作者将权重p应用到每条边上,然后通过如下公式计算第l层的隐藏层状态:
在这里插入图片描述

注意力层集成

  对于每个单词xi,由于每个T-GCN层都包含来自直接连接到它的单词的信息,因此多个T-GCN层可以从远距离学习间接的单词关系。因此,假设不同层具有编码上下文信息的独特能力。为了利用这些能力,作者建议通过专注的层集成全面学习所有T-GCN层。
  首先作者先对方面术语含有多个单词的情况,将它们的隐藏层向量去平均
在这里插入图片描述
  然后作者再对所有GCN层的输出求一个加权合,公式如下:
在这里插入图片描述

用T–GCN编码和译码

  作者通过BERT获得最原始的T-GCN的输入,当然一共有两种方式,就是后面是否跟方面实体。然后再输入到GCN当中,最后用Softmax函数进行分类:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值