21、基于局部排名距离(LRD)的生物信息学实验结果分析

基于局部排名距离(LRD)的生物信息学实验结果分析

在生物信息学领域,聚类技术、DNA 比较以及序列比对是非常重要的研究方向。本文将介绍基于局部排名距离(LRD)的相关实验及其结果,通过与其他方法的对比,展示 LRD 在这些方面的性能表现。

1. 聚类实验

在对 22 种哺乳动物数据集进行聚类时,对比了不同的聚类技术,结果如下表所示:
| 方法 | 错误聚类数 | 准确率(%) |
| — | — | — |
| Dinu 和 Sgarro(2006)提出的方法 | 3/22 | 86.36 |
| Dinu 和 Ionescu(2012a)提出的方法 | 3/22 | 86.36 |
| LRD + k - 元组之和 | 0/22 | 100.00 |

从表中可以看出,LRD + k - 元组之和的方法在聚类 22 种哺乳动物数据集时表现最佳,实现了 100% 的准确率。

在对 27 种哺乳动物线粒体 DNA(mtDNA)序列进行聚类时,基于 18 - 元组的 LRD 层次聚类得到的系统发育树显示,平均链接准则给出了最佳结果。不过,该方法唯一的错误是将猪与食肉目成员聚类在一起,而不是偶蹄目。在 27 种哺乳动物中,有 1 种被错误聚类,准确率为 96.29%。总体而言,基于 LRD 的聚类方法的准确率与类似研究中提出的最先进方法相当或更好。

2. DNA 比较实验

为了展示 LRD 可用于在一组 DNA 字符串中找到最接近的字符串(或最接近的子字符串),进行了 DNA 比较实验。实验使用了 Dinu 和 Ionescu(2012b)提出的遗传算法与 LRD 相结合的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值