PX4之旅-环境配置及编译

学习过程中遇到了各种环境问题,参考网上资料,对以下这些问题进行归纳整理。以便日后查阅

如果在PX4源代码编译过程中出现报错,可能有以下的解决方案

# 模块缺失

ModuleNotFoundError: No module named ‘menuconfig’ CMake Error at
cmake/kconfig.cmake:6 (message): kconfiglib is not installed or not
in PATH

please install using “pip3 install kconfiglib”

Call Stack (most recent call first): CMakeLists.txt:174 (include)

则可以使用如下命令进行配置

sudo -H python3 -m pip install kconfiglib

常见包缺失的情况及指令

sudo -H python3 -m pip install kconfiglib
sudo -H python3 -m pip install jinja2
sudo -H python3 -m pip install jsonschema
sudo -H python3 -m pip install empy
sudo -H python3 -m pip install pyros-genmsg
sudo -H python3 -m pip install packaging
sudo -H python3 -m pip install toml
sudo -H python3 -m pip install numpy
sudo -H python3 -m pip install future

若上述指令仍有报错,则尝试如下指令

pip3 install kconfiglib
pip3 install --user empy
pip3 install --user jsonschema
pip3 install --user jinja2
pip3 install --user pyros-genmsg
pip3 install --user packaging
pip3 install --user toml
pip3 install --user numpy

# 编译工具路径问题

CMake Error at CMakeLists.txt:235 (project): The CMAKE_C_COMPILER:

                arm-none-eabi-gcc

is not a full path and was not found in the PATH.

尝试如下指令:

sudo apt-get install gcc-arm-none-eabi

如果仍无法解决,可参考如下链接的解决方案

https://github.com/USCRPL/mbed-cmake/issues/2

# PX4源代码路径问题

可能存在编译过程中报错,说明源代码路径中不能包含有中文名称

1、修改PX4源代码路径

2、使用 make clean,  make disclean,  rm -rf build等指令清空后,重新编译

# 如果使用gazebo仿真时出现无法分配内存错误

执行

free -m

sudo mkdir /opt/images/

sudo rm -rf /opt/images/swap

sudo dd if=/dev/zero of=/opt/images/swap bs=1024 count=2048000

sudo mkswap /opt/images/swap

sudo swapon /opt/images/swap

# 子模块不全

– PX4 config: px4_fmu-v5_default
– PX4 platform: nuttx make[2]: *** 没有规则可制作目标“dirlinks”。 停止。 make[1]: *** [tools/Makefile.unix:332:dirlinks] 错误 2
– cmake build type: MinSizeRel
– The CXX compiler identification is GNU 9.2.1
– The C compiler identification is GNU 9.2.1
– The ASM compiler identification is GNU
– Found assembler: /usr/bin/arm-none-eabi-gcc

执行如下指令

make distclean

 git submodule update --init --recursive

# gazebo抱报错

存在gazebo版本问题,则需要卸载现有gazebo版本,重新安装匹配的版本

卸载gazebo9.0指令:

sudo apt-get remove gazebo9*

安装gazebo9.19

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
cat /etc/apt/sources.list.d/gazebo-stable.list
wget https://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt-get install gazebo9=9.1*
sudo apt upgrade libignition-math2

安装相关依赖项

sudo apt-get install ros-melodic-gazebo-ros
sudo apt-get install ros-melodic-gazebo-ros-control
sudo apt-get install ros-melodic-gazebo-ros-pkgs

# 参考链接

PX4从放弃到精通(二):ubuntu18.04配置px4编译环境及mavros环境_px4固件编译-CSDN博客

PX4从放弃到精通(二):ubuntu18.04配置px4编译环境及mavros环境_px4固件编译-CSDN博客

内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值