
高光谱
文章平均质量分 86
jwwkyjspt
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
高光谱遥感—99个案例项目、全覆盖技术链与应用场景一站式提升方案
程序05:Jupyter Lab插件开发(自定义高光谱工具)程序03:光谱曲线动态可视化(Matplotlib交互式)程序04:Anaconda多环境配置(CPU/GPU版本)程序17:三维点云辅助校正(LiDAR数据)程序24:对抗生成增强(CycleGAN)程序27:辐射一致性检验(相对辐射归一化)程序37:NDVI时间序列滤波(SG滤波)程序11:辐射定标验证(辐射标准板校正)程序12:几何精度验证(GCP残差分析)程序18:超分辨率重建(SRCNN应用)程序23:空间-光谱联合增强(3D滤波)原创 2025-06-24 18:11:25 · 771 阅读 · 0 评论 -
激光雷达数据处理与典型案例分析实践技术应用
特点:Terrasolid是一款专业的激光雷达数据处理软件,主要用于地理信息系统(GIS)和测绘领域,提供了丰富的地理数据处理和分析工具。特点:ArcGISPro是一款专业的地理信息系统(GIS)软件,提供了丰富的地理数据处理、分析和可视化功能,包括激光雷达数据处理工具。特点:ENVI是一款专业的遥感数据处理软件,提供了丰富的遥感图像处理和分析功能,包括对激光雷达数据的处理和分析。特点:LiDAR360是一款专业的激光雷达数据处理软件,提供了丰富的点云处理、配准、分类、可视化等功能。原创 2024-09-04 16:39:20 · 1720 阅读 · 0 评论 -
“Python+”集成技术高光谱遥感数据处理与机器学习深度应用
涵盖高光谱遥感数据处理的基础、python开发基础、机器学习和应用实践。结合Python编程工具,专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题,通过复现高光谱数据处理和分析过程,并解析代码,使学员掌握python高光谱数据处理技巧。通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。03)机载(无人机)高光谱数据获取。04)高光谱遥感的历史和发展。原创 2024-08-15 08:57:07 · 980 阅读 · 0 评论