
深度学习
文章平均质量分 86
jwwkyjspt
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
GeoAI大模型驱动的地球科学智能计算前沿实践技术应用
系统性地整合了从基础数据处理到高阶智能建模的全链条技术体系,以Python编程为基石,以机器学习与深度学习为核心方法论,深入剖析随机森林(RF)、卷积神经网络(CNN)、长短期记忆网络(LSTM)及Transformer等前沿模型在地学场景中的创新应用。前瞻性地探讨了物理机制与数据驱动的双轨建模(如耦合水文方程的Transformer蒸散发预测)、多模态数据对齐(跨模态清洗)、国产大模型工具链等前沿方向,并通过10+真实案例场景实践,提升学员地球科学智能计算能力,加速地球科学智能技术的产学研转化。原创 2025-07-22 15:50:36 · 688 阅读 · 0 评论 -
封闭式论文写作--全面掌握ChatGPT-4o的写作技能,掌握提示词使用技巧、文献检索与分析方法,帮助您选定研究方向,提炼学术论文题目
覆盖论文写作全流程的实战指导,从文献综述到数据分析和结果总结等,通过“案例讲解+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解ChatGPT-4o的最新功能、ChatGPT-4o辅助学术论文写作的方法与技巧,以及经典机器学习与深度学习模型和算法的前沿创新改进思路。参考提供的学术论文【摘要】部分的结构思维导图,利用提供的【摘要】模板和提示词模板,完成论文【摘要】部分的初稿(~10句话)。参考提供的学术论文【结论】部分的结构思维导图,利用提供的【结论】模板和提示词模板,完成论文【结论】部分的初稿。原创 2024-12-05 18:00:11 · 1384 阅读 · 0 评论 -
深度学习全景进阶:最新Python深度学习进阶与前沿应用
(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)原创 2024-09-17 10:30:00 · 726 阅读 · 0 评论 -
从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类
深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的模型。另一方面,随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。原创 2024-09-03 11:02:23 · 1411 阅读 · 0 评论 -
全流程Python编程、机器学习与深度学习实践技术应用
旨在帮助学员理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统学习包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、生成对抗网络(GAN)、YOLO目标检测算法、自编码器等前沿技术的原理及其PyTorch编程实现。6、值得研究的若干问题(隐含层神经元个数、学习率、初始权值和阈值等如何设置?变量选择与模型优化;4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2024-08-27 14:49:59 · 690 阅读 · 0 评论 -
Python深度学习进阶与前沿应用
(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)原创 2024-08-27 14:44:59 · 715 阅读 · 0 评论 -
“Python+”集成技术高光谱遥感数据处理与机器学习深度应用
涵盖高光谱遥感数据处理的基础、python开发基础、机器学习和应用实践。结合Python编程工具,专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题,通过复现高光谱数据处理和分析过程,并解析代码,使学员掌握python高光谱数据处理技巧。通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。03)机载(无人机)高光谱数据获取。04)高光谱遥感的历史和发展。原创 2024-08-15 08:57:07 · 980 阅读 · 0 评论