海思SD3403/SS928V100开发(6)单路GMSL-MIPI-YUV相机视频输入调试

本文详细记录了使用海思SS928V100平台进行单路GMSL-MIPI-YUV相机视频输入的调试过程,包括I2C调试、串行解串配置、vio sample的start isp问题解决,以及在不同HDMI显示器上的显示参数核对和调整。最终实现单路视频出图,但还存在多路采集和图像色彩等问题待解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

硬件连接:

       森云GMSL相机 -> GMSL 解串器 -> SD3403 MIPI0

暂时先进行单路视频输入通路调试

2. I2C调试

I2C地址手册描述

硬件上是使用I2C2 连接GMSL 解串器

调试如下:

(1)I2C都扫不到GMSL 解串器的地址

(2)示波器点I2C,看是否有波形

        I2C2 开发板和GMSL 解串器都有信号

(3)GMSL 解串器需要拉高复位脚

核查GPIO num

计算GPIO group

配置如下

cd /sys/class/gpio
echo  128 > export
echo out > direction
echo 1>value
echo 0>value

### 关于海思SD3403SS928芯片与MobileNet模型的兼容性和应用 #### MobileNet模型概述 MobileNet 是一种专门为移动设备设计的小型卷积神经网络架构,旨在实现高效计算的同时保持较高的准确性。该系列模型通过引入深度可分离卷积来减少参数数量并加速推理过程。 #### 海思SD3403/SS928芯片特性 海思SD3403/SS928是一款专为监控市场打造的专业Ultra-HD智能IP摄像机SOC,具备强大的视频处理能力和集成度高的特点[^1]。这类SoC通常集成了NPU(神经网络处理器),用于支持AI算法运行,特别是图像识别类任务。 #### 兼容性分析 鉴于海思SD3403/SS928内置有专门针对视觉处理优化过的硬件单元以及可能存在的专用AI加速器,理论上能够很好地适配像MobileNet这样轻量级且高效的CNN结构。具体来说: - **资源消耗低**:由于MobileNet本身的设计理念就是降低运算复杂度,在功耗敏感的应用场景下非常适合部署到此类嵌入式平台上; - **实时性强**:借助SoC内部高性能DSP/NPU的支持,可以满足大多数情况下对于快速响应的要求; - **灵活性高**:即使默认配置不完全匹配需求,也可以通过对固件编程调整以适应特定应用场景下的性能表现; 因此,基于上述几点理由,可以说海思SD3403/SS928与MobileNet之间存在良好的兼容性基础,并能在实际项目中发挥各自优势达成预期效果。 #### 实际应用案例 在安防监控领域内,利用这两者的组合可以帮助构建更加智能化的安全防护体系。例如,可以通过训练好的MobileNet模型来进行人员检测、行为分析等功能扩展,从而提升整个系统的实用价值和服务水平。 ```python import tensorflow as tf from PIL import Image import numpy as np # 加载预训练的MobileNet模型 model = tf.keras.applications.MobileNetV2(weights='imagenet') def preprocess_image(image_path): img = Image.open(image_path).resize((224, 224)) array = np.array(img) / 255. input_batch = array[np.newaxis, ...] return input_batch image_data = preprocess_image('test.jpg') predictions = model.predict(image_data) print(predictions) ``` 此代码片段展示了如何加载一个预先训练好的MobileNet V2模型并对输入图片数据进行预测操作。虽然这段Python脚本主要用于说明目的而非直接适用于目标平台,但它提供了一个基本框架供开发者参考以便移植至具体的嵌入式环境中执行相似的任务逻辑。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

free-xx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值