在企业内部使用 DeepSeek 进行私有化数据的垂直训练时,核心目标是将企业的专有数据与 DeepSeek 的基础模型结合,训练出适合企业特定场景的定制化模型。以下是详细的实施步骤和技术方案:
一、垂直训练的核心思路
垂直训练的本质是通过 迁移学习 和 微调(Fine-tuning),将 DeepSeek 的基础模型能力迁移到企业私有数据上,同时保留模型的通用能力。具体包括:
- 知识蒸馏:从 DeepSeek 的基础模型中提取通用能力(如语言理解、推理能力)。
- 领域适应:通过企业私有数据微调模型,使其适应特定领域(如金融、医疗、法律等)。
- 隐私保护:确保训练过程中私有数据的安全性。
二、垂直训练的技术方案
2.1 数据准备
-
数据收集:
- 收集企业内部的私有数据,包括但不限于:
- 文档(如合同、报告、产品手册)
- 对话记录(如客服日志、会议纪要)
- 结构化数据(如数据库、表格)
- 数据格式:文本文件(TXT、CSV)、PDF、Word 文档等。
- 收集企业内部的私有数据,包括但不限于:
-
数据清洗:
- 去除噪声数据(如重复内容、无关信息)。
- 对敏感信息进行脱敏处理(如替换人名、电话号码)。
-
数据标注:
- 对数据进行标注,构建训练集和验证集。标注