皮肤PHP
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
17、基于语音的疾病检测的鲁棒多视图判别学习
本文提出了一种基于语音的疾病检测方法——ROME-DLR(Robust Multi-View Discriminative Learning),通过融合多视图音频特征并结合标签信息,实现对复发性喉返神经麻痹(RLNP)和痉挛性发声障碍(SD)的高效检测。该方法利用共享-特定结构挖掘多视图数据的潜在关系,并采用$l_{2,1}$范数增强模型鲁棒性。实验表明,ROME-DLR在多个评估指标上均优于现有方法,具备良好的应用前景。原创 2025-09-01 09:31:47 · 30 阅读 · 0 评论 -
16、基于语音的疾病检测的鲁棒多视图判别学习
本文提出了一种基于语音的疾病检测方法,通过设计鲁棒多视图判别学习模型 ROME-DLR,充分利用多音频视图的互补信息,有效提升了疾病检测的准确性和鲁棒性。模型结合了多视图数据的共享-特定结构、标签松弛策略以及基于 l2,1 范数的鲁棒回归方法,通过实验验证了其在两个语音数据集上的优越性能。研究为无创、便捷的疾病检测提供了新思路,具有良好的应用前景。原创 2025-08-31 13:58:04 · 28 阅读 · 0 评论 -
15、基于语音的疾病检测联合学习模型JOLL4R
本文介绍了一种基于回归的联合学习模型JOLL4R,用于通过语音特征进行疾病检测。该模型通过融合来自不同音频的特征,结合自适应权重调整、ε-拖动技术、低秩正则化和ADASYN技术,有效提升了疾病检测的准确性。JOLL4R在多个实验中表现出优于现有方法的性能,尤其在处理类别不平衡问题方面具有显著优势。此外,该模型具备良好的扩展性,可应用于多模态数据融合及其他疾病检测场景。原创 2025-08-30 10:16:32 · 17 阅读 · 0 评论 -
14、基于语音的疾病检测联合学习
本文提出了一种基于标签松弛低秩岭回归的联合学习方法(JOLL4R),用于语音疾病检测。该方法通过融合不同语音信号的信息,结合损失耦合策略、ε-拖动技术和低秩约束,有效提升了疾病检测的准确性和模型的灵活性。实验结果表明,JOLL4R 在多个任务中均表现出色,具有良好的应用前景。原创 2025-08-29 12:35:13 · 25 阅读 · 0 评论 -
13、基于特征学习的帕金森病检测方法研究
本文提出了一种基于特征学习的帕金森病(PD)检测方法,通过提取语音信号的梅尔频谱图并采用球形K-均值算法分别学习PD患者和健康对照组的特征字典。随后,通过线性编码和池化操作生成具有高辨别力的特征,并在PD检测任务中进行验证。实验结果表明,与传统手工特征相比,该方法在准确率、几何均值、灵敏度和特异性方面均表现更优。此外,研究还对聚类数和池化方法进行了消融实验,发现均值和最小值池化优于其他方法。该研究为帕金森病的自动检测提供了新的特征学习思路和技术支持。原创 2025-08-28 12:34:40 · 17 阅读 · 0 评论 -
12、语音分析中的关键技术:GCI检测与帕金森病特征学习
本文探讨了语音分析中的两项关键技术:声门闭合瞬间(GCI)检测与帕金森病(PD)特征学习。在GCI检测部分,比较了二阶导数、Teager-Kaiser能量算子(TKEO)和局部均值加权二阶导数的表现,发现TKEO更适合用于GCI检测,并进一步分析了基于多尺度aTKEO的GMAT方法及其不同池化策略(GMATmax、GMATprod、GMATmean),指出GMATmean在鲁棒性和准确性方面的优势。在帕金森病特征学习部分,提出了一种无需专业知识的自动特征学习方法,通过对Mel频谱图一阶导数进行处理,结合球形原创 2025-08-27 10:50:53 · 21 阅读 · 0 评论 -
11、声门闭合瞬间检测算法的性能评估与分析
本博文系统评估和分析了声门闭合瞬间(GCI)检测算法的性能,重点比较了GMAT与ZFR、MSM、SEDREAMS等方法在干净语音、噪声语音以及病理语音场景下的表现。通过多个数据库和实验,评估了算法的识别率(IDR)、误报率(FAR)、漏检率(MR)、识别准确性(IDA)和识别偏差(IDB)等关键指标。研究还分析了GMAT算法的参数敏感性、运行时间、GCI细化方案以及其在低频噪声和病理语音识别中的应用。结果表明,GMAT在准确性方面表现突出,尤其在干净语音和中高信噪比环境下具有良好的鲁棒性和实用性。原创 2025-08-26 13:35:54 · 16 阅读 · 0 评论 -
10、基于TKEO的声门闭合瞬间(GCI)检测方法解析
本文详细解析了基于Teager-Kaiser能量算子(TKEO)的声门闭合瞬间(GCI)检测方法。文章介绍了TKEO的基本原理及其与GCI的关系,提出了带尺度参数k的绝对TKEO(Ω(k)),并通过多分辨率组合策略(包括最大池化、多尺度乘积和平均池化)提升检测的鲁棒性。基于此的GMAT算法无需基音信息,通过高效的后处理流程实现GCI检测,在干净语音和噪声语音环境下均表现出良好的性能。实验结果表明,GMAT算法在识别率、漏检率、误报率及计算效率方面优于现有主流算法,并在病理语音识别任务中展现出实际应用价值。原创 2025-08-25 15:24:49 · 23 阅读 · 0 评论 -
9、声门闭合瞬间检测:GMAT方法的优势与应用
本文介绍了基于多分辨率绝对Teager-Kaiser能量算子(TKEO)的GMAT方法在声门闭合瞬间(GCI)检测中的应用。GCI检测在语音编码、合成、基音跟踪等多个领域具有重要意义,但传统方法在噪声鲁棒性、计算效率等方面存在不足。GMAT方法利用TKEO的非线性特性,结合多尺度池化技术,实现了高精度、低计算成本的GCI检测,并在多种语音数据和噪声环境下表现出优越的鲁棒性和准确性。文章还展示了GMAT在病理语音识别等实际应用中的潜力,展望了其未来发展方向。原创 2025-08-24 12:02:09 · 14 阅读 · 0 评论 -
8、基于谐波增强的基音估计方法研究
本文研究提出了一种基于谐波增强的基音估计方法iPEEH,旨在改善噪声环境下语音谐波结构质量,从而提高基音检测的准确性。通过平方和卷积方法增强频谱谐波结构,并验证了其在多种基音估计方法(如HPS、SHRP、PEFAC、BaNa)中的有效性。实验结果表明,iPEEH显著降低了Gross Pitch Error(GPE)率,并在语音通信、音乐处理及医疗领域展现出广泛应用潜力。原创 2025-08-23 15:47:11 · 18 阅读 · 0 评论 -
7、用于音高估计的谐波增强技术解析
本文详细解析了一种用于音高估计的谐波增强技术,重点介绍了其与传统语音增强的区别、理论基础、实际实现步骤以及在音高估计中的应用。通过平方操作和自循环卷积等方法,该技术能够有效增强语音信号的谐波结构,从而提高音高估计的准确性。文章还展示了该方法在语音识别、音乐制作和医疗诊断等领域的应用前景,并提出了未来研究方向。原创 2025-08-22 13:40:50 · 23 阅读 · 0 评论 -
6、基音估计中的谐波增强技术
本文探讨了基音估计在语音相关应用中的重要性,并综述了现有算法的分类和局限性。针对频域算法中谐波结构不佳的问题,提出了一种谐波增强技术(iPEEH),通过增强频谱中的谐波来提高基音估计性能。实验表明,iPEEH 在多种噪声环境下均能显著降低基音检测误差率,并具有良好的通用性,可应用于音乐基音检测等领域。原创 2025-08-21 11:16:13 · 24 阅读 · 0 评论 -
5、帕金森病语音分析中采样率的影响及选择指南
本文探讨了采样率在帕金森病语音分析(PDVA)中的多方面影响,并提供了采样率选择的综合指南。通过分析重建误差、特征相关性、分类准确率、计算成本和存储成本等指标,研究发现采样率不应低于16 kHz,而在分类准确率方面,94 - 118 kHz范围内的采样率表现最佳。此外,文章还提出了根据不同应用场景选择合适采样率的决策流程,为实际应用提供了重要参考。原创 2025-08-20 14:31:37 · 23 阅读 · 0 评论 -
4、帕金森病语音分析中采样率的影响探究
本文探讨了采样率在帕金森病语音分析(PDVA)中的影响。研究从信息熵、重建误差、分类准确率、特征相关性以及存储和计算成本等多个维度分析了不同采样率对PDVA性能的影响。实验结果表明,较高的采样率有助于提高分类准确率和特征相关性,但会增加存储和计算负担。综合考虑信息损失、资源消耗和实际应用场景,建议选择适当的采样率范围(如16-48kHz)以达到性能与效率的平衡。研究为PDVA的实际应用提供了科学依据和技术支持。原创 2025-08-19 16:05:39 · 17 阅读 · 0 评论 -
3、计算机化语音分析:技术、挑战与未来方向
本文全面探讨了计算机化语音分析的技术、挑战与未来方向。文章从非线性动态特征提取、分类与回归、深度学习应用等核心技术展开,分析了当前在病理检测、疾病监测等生物医学领域的实际应用情况,并总结了MEEI、PDS等公开数据集上的最新成果。同时,文章系统性地梳理了计算机化语音分析面临的主要挑战,包括数据层面的小样本问题、类别不平衡问题以及算法层面的高维小样本问题。最后,提出了未来的研究方向,如多类分类、特征可视化、疾病严重程度预测、智能手机平台开发、远程语音分析以及自动特征学习,为该领域的进一步发展提供了理论基础和实原创 2025-08-18 11:48:45 · 20 阅读 · 0 评论 -
1、病理语音分析:技术与应用探索
本文介绍了病理语音分析技术及其在疾病检测与监测中的应用。语音作为生物医学信号,其异常变化可以反映神经系统、呼吸系统及声带和声道相关疾病的存在与进展。文章探讨了病理语音分析的生物医学价值、计算机化语音分析的现状与挑战,以及相关技术如音高估计、声门闭合瞬间检测、特征学习等。此外,还展望了病理语音分析在疾病诊断、远程医疗和语音康复中的应用前景。原创 2025-08-16 09:54:35 · 29 阅读 · 0 评论