探索多目标人工免疫系统的最新进展与应用
1. 引言
多目标优化问题是现代工程、经济和社会科学中经常遇到的一类复杂问题。传统的优化方法在处理这类问题时往往显得力不从心,因为它们难以在多个目标之间找到一个理想的平衡点。近年来,人工免疫系统(Artificial Immune Systems, AIS)作为一种新颖的优化方法逐渐崭露头角。尤其在多目标优化领域,AIS展现出了独特的优越性。
本文将聚焦于基于超体积选择机制的多目标人工免疫系统(Multi-Objective Artificial Immune System based on Hypervolume, MOAIS-HV),探讨其工作原理、优势以及实际应用。此外,还将介绍免疫系统模拟在免疫学研究中的重要性和方法论指导。
2. MOAIS-HV的工作原理
2.1 概念基础
MOAIS-HV的核心理念源于自然界中的免疫系统。免疫系统通过识别和消除外来病原体来保护机体健康。类似的,MOAIS-HV利用克隆选择原理和超体积贡献度来选择和优化解集。具体来说,克隆选择是指复制那些对优化目标贡献较大的个体,而超体积贡献度则衡量每个解在目标空间中占据的有效体积。
定义1:非支配关系
给定两个向量 ( x ) 和 ( y \in \mathbb{R}^k ),我们说 ( x \leq y ) 如果对于所有的 ( i = 1, \ldots, k ),都有 ( x_i \leq y_i )。进一步地,如果 ( x \leq y ) 且 ( x \neq y ),则称 ( x ) 支配 ( y ),记作 ( x \prec y )。