kaggle案例:数据科学社区调查报告(附学习视频)

本文深入剖析了Kaggle数据科学社区的现状,包括参与者的背景、热门竞赛和学习资源。通过调查报告,揭示了数据科学家们的学习路径和行业趋势,为初学者提供了宝贵的指导和视频教程链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:邬书豪,车联网数据挖掘工程师 ,R语言中文社区专栏作者。微信ID:wsh137552775

知乎专栏:https://www.zhihu.com/people/wu-shu-hao-67/activities


本文配套学习视频及代码,点击阅读原文免费获取。


2017年8月26日,全球最大的数据科学社群Kaggle发布了数据科学/机器学习业界现状全行业调查的数据集。调查问卷数据从2017年8月7日~8月25日收集。受访者囊括了来自50多个国家的16,716+位从业者,根据kaggle的调查问卷数据集,我们挖掘一些有营养的信息。

################# =========== 导入数据+简单清洗 ============== #################
library(data.table)  # fread()
library(dplyr)       # group_by() / %>% / summaries()
library(ggplot2)     # ggplot()

responses = fread("D:/R/天善智能/书豪十大案例/数据科学调查\\multipleChoiceResponses.csv")

## 把Country列中的表示中国的特征值改为中国
responses$Country <- ifelse(responses$Country == "Republic of China" |
                             responses$Country == "People 's Republic of China",
                           "China", responses$Country)







################# =========== 国家+年龄统计 ================ ##################

## 探索数据科学从业者的年龄中位数最大的十个国家
# 创建绘图所需的数据源(按照Country进行统计Age的中位数,并且按照Age进行降序排列)
df_country_age <- responses %>%
 group_by(Country) %>%                              # 按照Country进行统计
 summarise(AgeMedian = median(Age, na.rm = T)) %>%  # 统计Age的中位数
 arrange(desc(AgeMedian))                           # 按照Age进行降序排列

# reorder(Country, AgeMedian)--按照AgeMedian的升序排列其对应的Country
# head(df_country, 10)--选取数据源的前10行
# x参数中传入图中的x轴所需数据,y参数同理
# geom_bar()--绘制条形图的子函数
# fill = Country--按照Country填充条形图颜色
# stat(统计转换)参数设置为'identity',即对原始数据集不作任何统计变换
# geom_text()--添加文本注释的子函数
# label = AgeMedian--添加AgeMedian中的内容
# hjust--控制横向对齐(0:底部对齐,  0.5:居中,  1:顶部对齐)
# colour--控制注释颜色
# theme_minimal()--是ggplot的一种主背景主题
ggplot(head(df_country_age, 10), aes(x = reorder(Country, AgeMedian), y = AgeMedian)) +
 geom_bar(aes(fill = Country), stat = 'identity') +
 labs(x = 'Country', y = 'AgeMedian') +
 geom_text(aes(label = AgeMedian), hjust = 1.5, colour = 'white') +
 coord_flip() +
 theme_minimal() +
 theme(legend.position = 'none')           # 移除图例

# 封装绘图函数
fun1 <- function(data, xlab, ylab, xname, yname) {
 ggplot(data, aes(xlab, ylab)) +
   geom_bar(aes(fill = xlab), stat = 'identity') +
   labs(x = xname, y = yname) +
   geom_text(aes(label = ylab), hjust = 1.5, colour = 'white') +
   coord_flip() +
   theme_minimal() +
   theme(legend.position = 'none')
}

data <- head(df_country_age, 10)
xname <- 'Country'
yname <-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值