Grayscale histogram and threshold
Histogram
Definition: Histogram is a pixel distribution function based on each gray level
Application:
set up the digitizing parameters
help to find an optimal threshold level (minimum of two peaks in the optimal for defining the boundary )
Binary Operation
fixed and adaptive threshold value
thresholding usually involves analyzing the histogram
an example of a threshold value is the mean intensity value
fixed threshold:
Isodata Algorithm
reference:http://www.cnblogs.com/xiangshancuizhu/archive/2012/03/07/2384197.html
1. select and initial threshold \(t_{0}\)(mean intensity)
2. partition the image into two groups ( \(R_{1}\) and \(R_{2}\)) using the \(t_{0}\)
3. calculate the mean intensity values \(u_{1}\) and \(u_{2}\) of the partition \(R_{1}\) and \(R_{2}\)
4. select a new threshold : \(t_{1}=(u_{1}+u_{2})/2\)
5. repeat steps 2-4 until:\(t_{1}=t_{n}\)
OTSU algorithm
reference:http://blog.csdn.net/abcjennifer/article/details/6671288
http://www.cnblogs.com/skyseraph/archive/2010/12/21/1913058.html
selecting the lowest point between two classed(peaks)
Frequency (probability)
Mean
Total variance = standard deviation * standard deviation
其中\( \omega_0 \omega_1\)分别为背景和前景像素数的概率,\( \mu_0 \mu_1\)分别为背景和前景像素灰度均值
the criterion function involves between-classed variance to the total variance is defined as:
all possible thresholds are evaluated in this way, and the one that maximizes is \(\eta\) chosen as the optimal threshold
Entropy Method(熵)
a threshold level t separates the whole information into two classes ,and the entropy associated with them is:
maximum value of \(H=H_{b}+H_{w}\)
Triangle algorithms
maximized distance \(d\) indicate the optimal threshold
Adaptive Thresholding
local (or regional threshold) 分割为 子图像二值化,寻找相邻子图灰度值的相关性,对整个图像进行调整
>>>未完待续<<<