01-线性可分条件下判别函数权矢量算法

本文深入探讨了线性判别分析(LDA)的基本概念及其应用。内容覆盖了线性判别函数、广义线性判别函数及分段线性判别的原理,并详细解析了Fisher线性判别的数学模型,包括样本的平均向量、类内离散度矩阵等关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 线性判别函数

线性判别函数的一般形式:\(d(x)=\textbf{w}^{T}\textbf{x}\)  

增广权向量:\(\textbf{w}=(w_{1}\,w_{2} ... w_{n}\,w_{n+1})^{T}\)

增广模式向量:\(\textbf{x}=(x_{1}\,x_{2} ... x_{n}\,1)^{T}\)


(1)两类情况

(2)多类情况-1:将属于\(w_{i}\)类的模式与区域不属于\(w_{i}\)类的模式分开

     多类情况-2:将\(w_{i}/w_{j}\)分为两类,一个判别界面只能分开两个类别

     多类情况-3:是情况2的特例,它是没有不确定区域是的\(w_{i}/w_{j}\)两分法

2. 广义线性判别函数

\(x^{*}=(f_{1}(x)\,f_{2}(x)...f_{k}(x))^{T}\)  (k>n) \(x^{*}\)的k维大于x的n维

\(d(x)=\textbf{w}^{T}\textbf{x}^{*}\)  

增广权向量:\(\textbf{w}=(w_{1}\,w_{2} ... w_{k}\,w_{k+1})^{T}\)

增广模式向量:\(\textbf{x}^{*}=(f_{1}(x)\,f_{2}(x)...f_{k}(x)\,1)^{T}\)


3. 分段线性判别


4. 模式空间和权空间

界面方程:\(d(x)=\textbf{w}^{T}\textbf{x}=0\)  

此方程表示一超平面\(\pi\),它有三个性质:

(1)系数矢量\(w^T\)是该平面的法矢量

(2)判别函数d(x)的绝对值正比于特征点x到超平面d(x)=0的距离

(3)判别函数数值的正负表示出特征点位于哪个半空间

5. fisher线性判别

从d维空间到一维空间的一般数学变换方法

\(\textbf{y}_{n}=\textbf{w}^{T}\textbf{x}_{n}\)

w的值是无关紧要的,重要的是选择w的方向,w的方向不同,使得样本投影后的可分离度度得不同

因此,上述寻求最佳投影方向的问题,在数学上就是寻求最好的变换向量\(w^{*}\)的问题。

d维X空间

(1)各样本的平均向量:

\(\textbf{m}_{i}=\frac{1}{N_{i}}\sum_{x\in{\Gamma_{i}}} x\)    (i=1、2)

(2)样本类内离散度矩阵\(\textbf{S}_{i}\)和总类内离散度矩阵\(\textbf{S}_{w}\)

\(\textbf{S}_{i}=\sum_{x\in{\Gamma_{i}}}(x-m_{i})(x-m_{i})^{T}\)    (i=1、2)

\(\textbf{S}_{w}=\textbf{S}_{1}+\textbf{S}_{2}\)

(3)样本类间离散度矩阵\(\textbf{S}_{b}\)

\(\textbf{S}_{b}=(m_{1}-m_{2})(m_{1}-m_{2})^{T}\) 

\(\textbf{S}_{w}\)是对称半正定矩阵,单N>d时通常是非奇异的,\(\textbf{S}_{b}\)也是对称半正定矩阵,两类情况下,它的秩最大等于1

1维Y空间

(1)各类样本均值

\(\tilde{m_i}=\frac{1}{N_i}\sum_{y\in{Y_i}} y\)    (i=1、2)

(2)样本类内离散度和总类内离散度

\(\tilde{S_i^2}=\sum_{y\in{Y_i}}(y-\tilde{m_i})^2\)    (i=1、2)

\(\tilde{S_w}=\tilde{S_1^2}+\tilde{S_2^2}\)

Fisher准则函数

\( \large J_F(w) =  \frac{(\tilde{m_1}-\tilde{m_2})^2} {\tilde{S_1^2}+\tilde{S_2^2} } \) = \( \large \frac{w^T S_b w } { w^T S_w w }\)

利用Lagrange乘数法求解得到\( w^*=S_w^{-1}(m_1 - m_2)\)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值