1. 线性判别函数
线性判别函数的一般形式:\(d(x)=\textbf{w}^{T}\textbf{x}\)
增广权向量:\(\textbf{w}=(w_{1}\,w_{2} ... w_{n}\,w_{n+1})^{T}\)
增广模式向量:\(\textbf{x}=(x_{1}\,x_{2} ... x_{n}\,1)^{T}\)
(1)两类情况
(2)多类情况-1:将属于\(w_{i}\)类的模式与区域不属于\(w_{i}\)类的模式分开
多类情况-2:将\(w_{i}/w_{j}\)分为两类,一个判别界面只能分开两个类别
多类情况-3:是情况2的特例,它是没有不确定区域是的\(w_{i}/w_{j}\)两分法
2. 广义线性判别函数
\(x^{*}=(f_{1}(x)\,f_{2}(x)...f_{k}(x))^{T}\) (k>n) \(x^{*}\)的k维大于x的n维
\(d(x)=\textbf{w}^{T}\textbf{x}^{*}\)
增广权向量:\(\textbf{w}=(w_{1}\,w_{2} ... w_{k}\,w_{k+1})^{T}\)
增广模式向量:\(\textbf{x}^{*}=(f_{1}(x)\,f_{2}(x)...f_{k}(x)\,1)^{T}\)
3. 分段线性判别
4. 模式空间和权空间
界面方程:\(d(x)=\textbf{w}^{T}\textbf{x}=0\)
此方程表示一超平面\(\pi\),它有三个性质:
(1)系数矢量\(w^T\)是该平面的法矢量
(2)判别函数d(x)的绝对值正比于特征点x到超平面d(x)=0的距离
(3)判别函数数值的正负表示出特征点位于哪个半空间
5. fisher线性判别
从d维空间到一维空间的一般数学变换方法
\(\textbf{y}_{n}=\textbf{w}^{T}\textbf{x}_{n}\)
w的值是无关紧要的,重要的是选择w的方向,w的方向不同,使得样本投影后的可分离度度得不同
因此,上述寻求最佳投影方向的问题,在数学上就是寻求最好的变换向量\(w^{*}\)的问题。
d维X空间
(1)各样本的平均向量:
\(\textbf{m}_{i}=\frac{1}{N_{i}}\sum_{x\in{\Gamma_{i}}} x\) (i=1、2)
(2)样本类内离散度矩阵\(\textbf{S}_{i}\)和总类内离散度矩阵\(\textbf{S}_{w}\)
\(\textbf{S}_{i}=\sum_{x\in{\Gamma_{i}}}(x-m_{i})(x-m_{i})^{T}\) (i=1、2)
\(\textbf{S}_{w}=\textbf{S}_{1}+\textbf{S}_{2}\)
(3)样本类间离散度矩阵\(\textbf{S}_{b}\)
\(\textbf{S}_{b}=(m_{1}-m_{2})(m_{1}-m_{2})^{T}\)
\(\textbf{S}_{w}\)是对称半正定矩阵,单N>d时通常是非奇异的,\(\textbf{S}_{b}\)也是对称半正定矩阵,两类情况下,它的秩最大等于1
1维Y空间
(1)各类样本均值
\(\tilde{m_i}=\frac{1}{N_i}\sum_{y\in{Y_i}} y\) (i=1、2)
(2)样本类内离散度和总类内离散度
\(\tilde{S_i^2}=\sum_{y\in{Y_i}}(y-\tilde{m_i})^2\) (i=1、2)
\(\tilde{S_w}=\tilde{S_1^2}+\tilde{S_2^2}\)
Fisher准则函数
\( \large J_F(w) = \frac{(\tilde{m_1}-\tilde{m_2})^2} {\tilde{S_1^2}+\tilde{S_2^2} } \) = \( \large \frac{w^T S_b w } { w^T S_w w }\)
利用Lagrange乘数法求解得到\( w^*=S_w^{-1}(m_1 - m_2)\)