原创:悬鱼铭
目标检测(Object Detection)任务是计算机视觉中非常重要的基础问题,也是解决图像分割、目标跟踪、图像描述等问题的基础。目标检测是检测输入图像是否存在给定类别的物体,如果存在,输出物体在图像中的位置信息(矩形框的坐标值表示,Xmin、Ymin、Xmax、Ymax)。
早期,传统目标检测算法还没有使用深度学习,一般分为三个阶段:区域选取、特征提取、特征分类。
- 区域选取:采用滑动窗口(Sliding Windows)算法,选取图像中可能出现物体的位置,这种算法会存在大量冗余框,并且计算复杂度高。
- 特征提取:通过手工设计的特征提取器(如SIFT和HOG等)进行特征提取。
- 特征分类:使用分类器(如SVM)对上一步提取的特征进行分类。
传统算法HOG+SVM的作用如下:
2014年的R-CNN(Regions with CNN features)使用深度学习实现目标检测,从此拉开了深度学习做目标检测的序幕。目标检测大致可以分为一阶段(One Stage)模型和二阶段(Two Stage)模型。目标检测的一阶段模型是指没有独立地提取候选区域(Region Proposal),直接输入图像得到图中存在的物体类别和相应的位置信息。典型的一阶段模型有SSD(Single Shot multibox-Detector)、YOLO(You Only Look Once)系列模型等。二阶段模型是有独立地候选区域选取,要先对输入图像筛选出可能存在物体的候选区域,然后判断候选区域中是否存在目标,如果存在输出目标类别和位置信息。经典的二阶段模型有R-CNN、SPPNet、Fast R-CNN、Faster R-CNN
下图总结了目标检测中一些经典模型的发展历程:
一般来说,一阶段模型在计算效率上有优势,两阶段在检测精度上有优势。对于一阶段和二阶段模型在速度上和精度上的差异,一般有以下原因:
1. 多数一阶段模型是利用预设的锚框(Anchor Box)来捕捉图像可能存在物体的区域,图像中包含物体的框远少于总共的锚框,因而在训练分类器时正负样本数目极不平衡,这会导致分类器训练的效果不好。
2. 二阶段模型在会修正候选框的位置,带来更高的定位精度,同时也增加了模型复杂度。
接下来,简单介绍二阶段模型的发展过程。
R-CNN