
IOT
文章平均质量分 89
凯哥Java
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ChirpStack设备帧计数器异常排查:Frame-counter reset/rollover问题分析与解决
本文分析了ChirpStack设备中帧计数器异常问题,包括Frame-counter reset/rollover的成因与解决方案。当设备与服务器计数器不一致时,会触发安全拦截导致通信中断。文章提供了两种解决方式:强制重置计数器(推荐)或临时关闭验证(风险高)。同时提出固件优化(持久化存储、32位计数器)和运维监控等预防措施,在保障LoRaWAN通信安全的前提下降低业务中断风险。操作路径以表格形式清晰呈现,便于快速定位问题。原创 2025-07-18 15:05:43 · 607 阅读 · 0 评论 -
物联网数据归档之数据存储方案选择分析
MySQL与TDengine在物联网数据归档中的对比分析表明:MySQL适合小型场景(设备<1千/日数据<100万),需配合分区表、批量写入等优化;而TDengine在设备>1万、需实时分析的场景优势显著,具备百万级写入、高效压缩和原生时序查询能力。建议根据数据规模权衡选择,小型系统可用优化后的MySQL,中大型场景优先考虑TDengine以降低长期成本。混合业务可双写MySQL(事务)和TDengine(指标)。验证阶段建议用生产数据实测两种方案的写入延迟、存储占用和查询性能。原创 2025-06-03 16:13:06 · 963 阅读 · 0 评论 -
物联网数据归档方案选择分析
物联网归档数据存储方案分析 摘要:针对物联网时序数据存储,对比了两种归档方案。方式1采用年月日三级分区,方式2采用年月日时四级分区。综合分析表明,方式2在查询性能、写入效率和冷热数据管理方面更具优势:1)小时级分区精准匹配原始数据粒度;2)支持高效明细查询和动态聚合;3)便于实施分层存储策略。建议优先选择方式2,并结合时序数据库(如ClickHouse)的自动分区和压缩功能优化实施。方式1仅适用于数据量极小且无需原始数据分析的特殊场景。(149字)原创 2025-06-03 15:36:52 · 1047 阅读 · 0 评论