1. 引言
近年来,大型语言模型 (LLM) 取得了令人瞩目的进展,其中 Llama、Qwen 和 ChatGLM 是三个备受关注的开源模型。它们都在 Transformer 架构的基础上进行了改进和优化,并在各种 NLP 任务上取得了优异的性能。
本文将深入分析 Llama、Qwen 和 ChatGLM 的网络结构和训练方法,比较它们的异同以及各自的优势。
2. 模型结构对比
特性 | Llama | Qwen | ChatGLM |
---|---|---|---|
基础架构 | Decoder-only | Decoder-only | Encoder-Decoder (GLM架构,非传统意义) |
预训练目标 | Causal Language Modeling | Causal Language Modeling | Autoregressive Blank Infilling ( |