
电商数据挖掘:Python+大语言模型 (LLM) 重塑
文章平均质量分 92
电商数据挖掘:Python+大语言模型 (LLM) 重塑
kakaZhui
人工智能算法工程师,精通大模型算法以及RAG,Agent等
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python 数据智能实战 (14):[综合实战] 智能用户分群与精准营销策略生成
— 终极演练!从数据到策略,融合 LLM 完成端到端电商用户运营项目各位数据智能探索者,欢迎来到我们专栏的终极实战关卡!经过前面一系列的学习和实践,我们已经不再仅仅是数据的处理者和分析者,更是具备了利用大语言模型 (LLM) 这一前沿 AI 技术,从数据中挖掘更深层价值、驱动更智能决策的潜力探索者。我们学会了如何让 Python 与 LLM 对话,如何利用 Embeddings 理解文本语义,如何将 LLM 特征融入传统模型,如何评估效果并坚守安全底线。原创 2025-05-07 09:34:47 · 879 阅读 · 0 评论 -
Python 数据智能实战 (13):AI的安全可靠 - 电商数据智能的红线与指南
— 技术向善,行稳致远:在智能时代,坚守数据伦理,构建可信赖的 AI 应用通过前面的篇章,我们已经深入探索了如何利用 Python 和大语言模型 (LLM) 挖掘电商数据的巨大潜力,从智能用户分群到语义推荐,再到个性化内容生成和模型效果评估。我们手中的工具越来越强大,我们赋予数据的“智能”也越来越令人惊叹。然而,强大的力量往往伴随着巨大的责任。我们的技术应用是否符合伦理规范?是否足够负责任?电商痛点聚焦:智能化的“双刃剑”与潜在风险数据隐私泄露:用户信任的基石不容动摇!原创 2025-05-06 16:54:35 · 621 阅读 · 0 评论 -
Python 数据智能实战 (12):效果评估 - 超越传统指标
— "看起来很酷"还不够!如何科学评估 LLM 应用效果,证明你的数据智能方案物有所值我们已经一起探索了如何将大语言模型 (LLM) 的“超能力”注入到用户分群、购物篮分析、流失预测、文案生成、商品描述优化等多个电商关键环节。我们构建了听起来更智能、看起来更强大的解决方案。这些融合了 LLM 的新方法,效果到底怎么样?我们如何科学、客观地评估它们带来的真正价值?电商痛点聚焦:“智能”≠“有效”,如何量化价值?仅仅因为使用了炫酷的 LLM 技术,并不意味着最终结果一定更好。原创 2025-05-04 20:23:00 · 1100 阅读 · 0 评论 -
Python 数据智能实战 (11):LLM如何解决模型可解释性
— 不只知其然,更要知其所以然:借助 LLM,揭开复杂模型决策的神秘面纱在前面的篇章中,我们学习了如何利用 LLM 赋能用户分群、购物篮分析、流失预测以及个性化内容生成。我们看到了 LLM 在理解数据、生成特征、提升模型效果和自动化内容方面的巨大潜力。模型的可解释性 (Model Interpretability / Explainability)。电商痛点聚焦:模型效果好,但“为什么”?想象一下,你构建了一个非常精准的用户流失预测模型,它成功预测出某位高价值用户即将流失。“为什么这个用户会流失?原创 2025-05-04 20:17:09 · 1251 阅读 · 0 评论 -
Python 数据智能实战 (10):智能商品推荐 - LLM “猜你喜欢”
— 从协同过滤到语义理解:融合 LLM,打造更懂用户心意的个性化推荐在之前的篇章里,我们已经见证了 LLM 在用户分群、购物篮分析、流失预测、内容生成等多个电商环节的赋能潜力。今天,我们将聚焦于电商平台的“心脏”之一,也是用户体验和商业转化的核心驱动力——商品推荐系统 (Recommendation System)。个性化推荐系统早已是各大电商平台的标配。“猜你喜欢”、“为你推荐”、“相关商品”等模块无处不在。原创 2025-05-03 20:41:21 · 1420 阅读 · 1 评论 -
Python 数据智能实战 (9):商品描述“一键优化” - LLM 助你写出爆款“带货文案”
— 告别平庸描述,提升点击与转化:用 LLM 分析、改写、生成高质量商品详情页上一篇,我们探索了如何利用 LLM 规模化地生成个性化营销文案,精准触达目标用户。今天,我们将聚焦于电商转化链路中至关重要的一环——商品详情页商品描述。一个优秀的商品描述,不仅仅是简单地罗列规格参数,它更应该像一个沉默的王牌销售员在众多同类商品中脱颖而出。让用户快速了解产品的独特卖点和能解决什么问题。通过生动的语言、场景化的描绘触动用户的情感和需求。提前预判并解答用户可能关心的问题,降低决策门槛。原创 2025-05-03 20:30:32 · 886 阅读 · 0 评论 -
Python 数据智能实战 (8):基于LLM的个性化营销文案
— 告别群发轰炸,拥抱精准沟通:用 LLM 为你的用户量身定制营销信息在前面的篇章中,我们学习了如何利用 LLM 增强用户理解(智能分群)、挖掘商品关联(语义购物篮)、提升预测精度(融合文本特征的流失预警)。我们不断地从数据中提取更深层次的洞察。然而,洞察的最终目的是为了行动。在电商运营中,最直接的行动之一就是通过营销活动触达用户,引导转化。但是,千篇一律的群发营销信息,效果往往越来越差,甚至引起用户反感。群发效果差,打开率、点击率、转化率持续走低?原创 2025-05-02 21:26:45 · 1271 阅读 · 3 评论 -
Python 数据智能实战 (7):智能流失预警 - 融合文本反馈
— 不再错过关键预警!结合用户行为与 LLM 文本洞察,构建更精准的流失预测模型在之前的探索中,我们学习了如何利用大语言模型 (LLM) 对用户评论进行深度挖掘,提取情感、发现主题,并将非结构化的文本信息转化为有价值的特征 (如 Embeddings)。用户流失预测 (Customer Churn Prediction)。用户流失是悬在所有电商企业头上的“达摩克利斯之剑”。获取新客户的成本远高于维护老客户,因此,及早、准确地识别出有流失倾向的用户并采取有效的挽留措施,对企业的持续增长至关重要。原创 2025-05-02 21:20:03 · 1100 阅读 · 0 评论 -
Python 数据智能实战 (6):用户评论深度挖掘
— 从繁杂评论到精准洞察:主题发现与情感趋势分析,驱动产品优化与体验提升在上篇内容中,我们学习了如何利用 LLM 提升用户分群的精度,以及如何超越传统购物篮分析,挖掘商品间的语义关联。今天,我们将聚焦于电商领域价值密度最高的非结构化数据之一——用户评论 (Customer Reviews)。用户评论是用户与品牌/产品直接“对话”的宝贵窗口。用户对产品具体功能、特性的真实反馈(优点、缺点、使用体验)。用户对服务流程(物流、客服、包装等)的满意度与抱怨点。用户未被满足的需求或新的期望。用户的。原创 2025-05-01 22:13:42 · 1109 阅读 · 0 评论 -
Python 数据智能实战 (5):语义购物篮分析 - 从“常一起买”到“为何一起买”的深度洞察
— 超越频繁项集,挖掘商品语义关联与互补性,驱动更智能的推荐与组合策略购物篮分析 (Market Basket Analysis),并探索如何利用 LLM 为其注入“语义理解”的能力,从而挖掘出远超传统方法的深度洞察。传统的购物篮分析,最经典的算法莫过于Apriori。它通过计算支持度 (Support)置信度 (Confidence)和提升度 (Lift)等指标,能够有效地发现那些经常被用户同时购买的商品组合(频繁项集和关联规则)。{牛奶, 面包} -> {黄油}原创 2025-05-01 21:54:28 · 824 阅读 · 0 评论 -
Python 数据智能实战 (4):智能用户分群 - 融合行为
— 超越 RFM 标签,结合用户行为与 LLM 文本洞察,实现更精准、更立体的客户细分欢迎回来!在前面的学习中,我们已经为 Python 数据智能工具箱添置了与大语言模型 (LLM) 交互的能力,特别是掌握了如何利用 LLM 将非结构化的文本信息转化为包含深层语义的数值向量——Embeddings。用户分群 (User Segmentation)。传统的用户分群方法,例如经典的RFM 模型。原创 2025-04-30 15:18:11 · 1104 阅读 · 0 评论 -
Python 数据智能实战 (3):特征工程进化论 - 从文本到向量,LLM Embeddings 实战
— 解锁文本深层语义,将用户评论、商品描述转化为模型可用的“智慧特征”在上一篇博客中,我们成功搭建了 Python 与大语言模型 (LLM) 交互的桥梁,并初步掌握了通过 Prompt Engineering 让 LLM 理解和执行我们指令的艺术。我们甚至小试牛刀,利用 LLM 对电商评论进行了初步的情感分类。这仅仅是冰山一角!LLM 的真正威力远不止于此。如何让主要处理数值和类别数据的机器学习模型,“理解”非结构化的文本信息?电商痛点再聚焦:文本数据的“次元壁”原创 2025-04-30 09:53:35 · 824 阅读 · 0 评论 -
Python 数据智能实战 (2):LLM 工具箱搭建 - API/库实操与高效 Prompt 设计入门
— 工欲善其事,必先利其器:连接你的 Python 与 LLM 大脑,掌握“对话”的艺术本篇博客,我们将聚焦于“工欲善其事,必先利其器”这一核心环节,带你完成以下关键任务:了解访问 LLM 的主要方式 (云 API vs. 本地模型),并为入门选择合适的路径。学习如何配置环境,安装必要的库,并通过 Python 代码调用 LLM 服务 (以 OpenAI API 为例)。理解什么是 Prompt,为何它如此重要,并掌握设计有效 Prompt 的核心原则与基础技巧。原创 2025-04-29 16:36:42 · 1248 阅读 · 0 评论 -
数据挖掘专栏介绍:用 Python + 大语言模型 (LLM) 重塑电商数据价值
— 不止于挖掘,更要智能涌现:用 Python + 大语言模型 (LLM) 重塑电商数据价值或许你已经跟随我们之前的“零基础上手Python数据分析”专栏,掌握了 Pandas 的数据操纵、Matplotlib/Seaborn 的可视化呈现,甚至对传统的数据挖掘技术如聚类、分类、回归有了初步的了解。你可能已经能够从数据中提取信息,生成报表,甚至构建一些基础的预测模型。但是,你是否感受到了瓶颈和机遇?海量“非结构化”数据,传统方法力不从心?面对汹涌而来的用户评论、商品描述、客服聊天记录、社交媒体帖子等。原创 2025-04-29 16:03:24 · 1397 阅读 · 0 评论