Sharding-JDBC 使用教程
Sharding-JDBC 是 Apache ShardingSphere 生态的一部分,提供了分库分表、读写分离等特性,能够无侵入地增强 JDBC 连接池,实现数据库的分片。本教程将介绍 Sharding-JDBC 的基本概念、安装配置、不同场景下的使用方法,并通过示例代码帮助你快速上手。
1. Sharding-JDBC 介绍
Sharding-JDBC 是一个轻量级的 Java 框架,能够通过代理 JDBC 连接池的方式,实现数据库分片、分库分表、读写分离、分布式事务等功能。它适用于 Java 应用程序,不需要额外的中间件,支持多种数据库(MySQL、PostgreSQL、Oracle、SQL Server 等)。
1.1 为什么要使用分库分表?
随着业务的增长,单一数据库容易遇到以下问题:
- 存储瓶颈:单库单表的存储容量有限,数据量过大时会影响性能。
- 查询性能下降:数据量增大后,查询响应时间变长,索引维护成本上升。
- 写入压力过大:高并发写入时,数据库容易成为系统瓶颈。
- 扩展性受限:单数据库架构难以水平扩展,影响业务扩展能力。
通过 分库分表,可以将数据分散到多个数据库实例和表中,提高数据库的读写性能,降低单库负载,同时提升系统的可扩展性。
1.2 水平分表与垂直分表
在数据库分片中,常见的策略有 水平分表 和 垂直分表,两者的区别如下:
水平分表(Horizontal Partitioning)
水平分表是指 将同一个表的数据按某种规则拆分到多个表中,每个表结构相同,但存储的数据范围不同。例如:
- 按
order_id
取模,将order
表拆分为order_0
、order_1
、order_2
等。 - 按时间区间拆分,将
log
表拆分为log_2023
、log_2024
等。
优点:
- 适用于数据量大、查询高并发的场景。
- 提高查询性能,减少单表数据量。
- 通过分片规则,查询时可以快速定位到目标表。
缺点:
- 分片规则复杂,维护成本较高。
- 可能会涉及跨分片查询,影响性能。
垂直分表(Vertical Partitioning)
垂直分表是 按字段将一个表拆分成多个表,每个表存储部分字段,通常用于拆分宽表。例如:
user
表包含id, name, age, address, bio, login_history
等字段,将login_history
拆分到user_login_history
表中。product
表包含id, name, price, description, reviews
,将reviews
拆分到product_reviews
表中。
优点:
- 减少单表列数,提高查询性能。
- 更容易进行读写分离,提升系统吞吐量。
- 便于冷热数据分离,减少主表负载。
缺点:
- 查询时可能需要
JOIN
操作,影响性能。 - 表结构设计复杂,业务逻辑需要调整。
1.3 Sharding-JDBC 的核心特性
- 数据分片:支持水平分库、分表,提升数据库性能和扩展能力。</