
推荐系统
开开_王子
逆风的方向更适合飞翔,我不怕万人阻挡,只怕自己投降。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
使用tensorflow构建电影推荐系统
1、搜集数据集 https://grouplens.org/datasets/movielens/ 2、准备数据 import pandas as pd import numpy as np import tensorflow as tf ratings_df = pd.read_csv('ml-latest-small/ratings.csv') ratings_df.tail() #...原创 2018-08-08 15:36:30 · 4518 阅读 · 0 评论 -
推荐系统的基本原理
基于内容的推荐系统 根据每部电影的内容以及用户已经评过分的电影来判断每个用户对每部电影的喜好程度,从而预测每个用户对没有看过的电影的评分。 电影内容矩阵X * 用户喜好矩阵θ = 电影评分表 那么,用户喜好矩阵θ(用户对于每种不同类型电影的喜好程度)如何求解呢? 用户喜好矩阵θ的代价函数: 其中,正则化项为防止过拟合。 优点: (1)不存在商品冷启动问题 (2)可...原创 2018-08-08 10:09:24 · 3078 阅读 · 1 评论 -
推荐系统的性能评估
1、线下评估 均方分误差 ( RMSE, Root Mean Square Error ) RMSE越小,表示误差越小,推荐系统的性能越好。 平均绝对误差 (MAE,Mean Absolute Error) recall recall = 0.6 F1 score F的值越大,说明推荐系统的性能越好。 2、线上评估(A/B test) CTR ...原创 2018-08-08 14:40:32 · 2298 阅读 · 0 评论