HTC(Hybrid Task Cascade)结构全解析(文字版)

1. 输入阶段

    输入:一张图像(如 1024×1024)

    预处理:图像归一化(均值方差)、resize、padding(满足尺寸要求)
2. Backbone 特征提取器

    使用 ResNet-101 提取特征

    分为 5 个阶段输出特征层(C1~C5),HTC 通常使用 C2-C5
 3. FPN(特征金字塔网络)

    输入:Backbone 输出的多层特征(如 C2~C5)

    目的:融合不同尺度的语义信息

    输出:多尺度特征图 P2 ~ P5(增强了小目标与大目标的表示能力)
 4. RPN(区域建议网络)

    输入:FPN 各层特征

    输出:多个 anchor proposals(候选框)

    每个 anchor 会:

        预测一个目标是否存在(分类)

        调整其形状(回归边界框)
 5. Proposal ROI Align

    将 RPN 生成的候选框提取出对应区域的特征

    使用 RoIAlign 精确对齐到固定尺寸(如 7×7 或 14×14)
 6. 三级 Cascade 的 RoI Head(核心)
第 1 阶段:

    BBox Head-1:

        分类(前景/背景)

        边界框回归

    Mask Head-1:

        对应的实例分割

    语义分支(Semantic Head):

        利用全图语义特征辅助 mask 分支(info flow)

第 2 阶段:

    将上阶段预测框进行 refinement

    BBox Head-2、Mask Head-2 同样处理 refined proposals

第 3 阶段:

    再次 refinement

    最终输出更精确的分类、边框和 mask

⚠️ 每阶段之间有 信息流交互(Mask Info Flow),帮助 mask 学习更好的上下文。
 7. 输出结果

    最终的:

        BBox:检测框

        Label:类别

        Mask:分割结果

    后处理:

        NMS(非极大值抑制)

        保留得分高的目标(如 score > 0.5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值