基和维数的概念

 维数是针对一个向量集,而不是针对单个向量的

落在平面上的全体向量维数是2,尽管他们可能有N个分量

很多人认为向量分量是N,维数就是N,这是错误的

一个基是一个向量集,它是线性无关,且空间中任何向量都可以表示为基向

量的线性组合
### 计算实矩阵的 #### 实矩阵的定义 对于给定的一个实矩阵 \( A \),其列空间(Column Space)是由该矩阵各列所张成的空间。如果这些列向量之间存在线性关系,则可以找到一组最大量的线性无关列作为这个子空间的一组底;这组量即为矩阵的秩,也就是列空间的度。 为了求得一个具体的以及确定,可以通过高斯消元法来简化矩阵至阶梯形形式[^1]: ```python import numpy as np def find_basis_and_dimension(matrix): # 将输入转换为numpy组并执行rref (Reduced Row Echelon Form) matrix_rref = np.array(matrix, dtype=float).copy() m,n = matrix_rref.shape row_index = 0 for col_index in range(n): if row_index >= m: break nonzero_rows = np.nonzero(np.abs(matrix_rref[:,col_index]) > 1e-9)[0] if len(nonzero_rows) != 0: first_non_zero_row = min(nonzero_rows) # 如果当前行不是第一个非零元素所在的位置则交换两行位置 if first_non_zero_row != row_index: temp = matrix_rref[row_index].copy() matrix_rref[row_index] = matrix_rref[first_non_zero_row] matrix_rref[first_non_zero_row] = temp pivot_element = matrix_rref[row_index][col_index] # 归一化主元所在的行 matrix_rref[row_index] /= pivot_element # 清除其他行对应于当前列的所有条目 for r in range(m): if r != row_index and abs(matrix_rref[r,col_index])>1e-9: factor = -matrix_rref[r,col_index]/matrix_rref[row_index,col_index] matrix_rref[r,:] += factor * matrix_rref[row_index,:] row_index+=1 rank_of_matrix = sum([any(abs(row)>1e-9) for row in matrix_rref]) basis_vectors_indices = [] for i in range(rank_of_matrix): for j in range(len(matrix_rref[i])): if abs(matrix_rref[i,j])>=1e-9: basis_vectors_indices.append(j) break original_columns_as_array = np.array(matrix,dtype=float).T[basis_vectors_indices].T.tolist() return {"basis":original_columns_as_array,"dimension":rank_of_matrix} # 示例使用 A = [[1,-2,3],[4,5,6]] result=find_basis_and_dimension(A) print(f"Basis vectors are:\n{result['basis']}\nThe dimension is {result['dimension']}") ``` 此代码实现了通过将原始矩阵转化为最简行列梯阵型(RREF), 来找出构成原矩阵列空间础的一系列向量及其对应的度大小。注意这里假设读者已经具备了一定程度上的Python编程技能[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值