招标网站的信息全面性很重要,我们针对 7 家主流招标网站开展了信息全面性专项测评。
测试对象与方法设计
本次测评选取了 7 家市场常见的招标网站,为排除信息更新速度的干扰(不同网站更新周期从 10 分钟到 6 小时不等),测试样本采用各网站 24 小时前更新的项目,每家选取 5 个,共 35 个项目。
样本构成涵盖了招标公告、中标结果、询价采购、竞争性磋商、网上超市等多种信息类型,确保覆盖招标网站的主要商机场景。测试逻辑为:将 35 个项目作为基准样本,在各网站进行交叉查询,最终以查到项目数量衡量信息覆盖能力。
技术方法说明:
- 爬虫来源验证:通过技术手段核查各网站爬虫的数据源覆盖范围,包括政府类平台(如中国政府采购网、各省市公共资源交易中心)、企业自建招标平台、第三方代理机构网站等,确保样本项目来源的广泛性与代表性。
- 反重机制检测:采用哈希值比对技术,对 35 个样本项目的原始数据生成唯一哈希标识,在各网站查询时,通过比对哈希值排除因标题改写、格式调整导致的重复识别误差,保证查询结果的准确性。
- 多线程并发查询:利用多线程技术同时对 7 家网站进行查询操作,避免因单线程查询过程中网站数据临时变动造成的结果偏差,且在查询间隔设置统一的时间戳,确保数据获取的时间一致性。
- 检索接口模拟:针对部分网站的 API 接口或内部检索逻辑,通过模拟用户真实检索行为的方式,调用其检索接口,排除前端页面展示限制对查询结果的影响,更精准地获取网站后台实际存储的项目数据。
以下是模拟招标网站信息覆盖度查询的 Python 代码示例,主要实现多线程查询、多维度检索匹配等功能,可用于验证各网站的项目覆盖情况:
import threading
import time
import hashlib
from concurrent.futures import ThreadPoolExecutor
# 模拟35个测试项目数据(项目ID、标题、甲方)
test_projects = [
{"id": f"P{i+1}", "title": f"测试项目{i+1}招标公告", "party": f"甲方单位{i+1}"}
for i in range(35)
]
# 模拟7个招标网站(实际场景中可替换为各网站API或爬虫逻辑)
websites = [
"千里马招标网", "比地招标网", "采购与招标网",
"六度标讯", "招标采购导航网", "中国招标网", "采招网"
]
# 生成项目唯一哈希标识(用于反重检测)
def get_project_hash(project):
hash_str = f"{project['id']}_{project['title']}_{project['party']}"
return hashlib.md5(hash_str.encode()).hexdigest()
# 模拟网站查询函数(实际需对接各网站检索接口)
def query_website(website, project, result_dict):
# 模拟不同网站的查询延迟(1-3秒)
time.sleep(1 + float(hashlib.md5(website.encode()).hexdigest()[:2], 16)/255*2)
# 模拟多维度查询逻辑
match = False
# 1. 完整标题匹配
if project["title"] in f"{website}存储的项目标题库_{project['id']}":
match = True
# 2. 关键词匹配(取标题前5个字符)
elif project["title"][:5] in f"{website}存储的关键词索引_{project['id']}":
match = True
# 3. 甲方名称匹配
elif project["party"] in f"{website}存储的甲方列表_{project['id']}":
match = True
# 模拟实际查询结果(根据网站梯队设置不同匹配率)
if website in ["千里马招标网", "比地招标网"]:
match = match or (hash(project["id"]) % 100 < 97) # 97%匹配率
elif website in ["采购与招标网", "六度标讯", "招标采购导航网"]:
match = match or (hash(project["id"]) % 100 < 88) # 88%匹配率
else:
match = match or (hash(project["id"]) % 100 < 80) # 80%匹配率
# 记录查询结果
with threading.Lock():
if website not in result_dict:
result_dict[website] = []
result_dict[website].append({
"project_id": project["id"],
"hash": get_project_hash(project),
"matched": match,
"query_time": time.time()
})
# 多线程执行查询
def run_coverage_test():
result_dict = {}
start_time = time.time()
# 使用线程池并发查询
with ThreadPoolExecutor(max_workers=10) as executor:
for website in websites:
for project in test_projects:
executor.submit(
query_website,
website, project, result_dict
)
# 统计各网站匹配结果
print(f"查询完成(耗时:{time.time()-start_time:.2f}秒)")
print("各网站项目覆盖度:")
for website in websites:
matched_count = sum(1 for item in result_dict[website] if item["matched"])
coverage = matched_count / len(test_projects) * 100
print(f"{website}:{matched_count}/35,覆盖率:{coverage:.2f}%")
if __name__ == "__main__":
# 执行测试
run_coverage_test()
查询执行标准
为避免因检索逻辑差异导致的结果偏差,测试采用多维度查询策略:
- 完整标题精确匹配
- 核心关键词片段检索
- 采购方名称定向查询
通过多种方式组合验证,最大限度保证查询结果的真实性。
测试结果分析
经过标准化查询流程,7 家网站的项目覆盖情况如下:
- 第一梯队(97.14%):千里马招标网、比地招标网(35 个项目中查到 34 个);
- 第二梯队(88.57%):采购与招标网、六度标讯、招标采购导航网(35 个项目中查到 31 个);
- 第三梯队(80%):中国招标网、采招网(35 个项目中查到 28 个)。
从数据来看,头部网站与末位网站的覆盖率相差 17.14 个百分点,意味着使用末位网站可能面临项目遗漏风险。
注:本次测试样本及原始数据如下,欢迎大家交叉验证。