深度学习入门——sigmoid & step & ReLU函数 & softmax函数

本文介绍了深度学习中常见的激活函数,包括sigmoid、ReLU及其溢出问题和softmax函数,重点讨论了softmax函数的概率解释及如何处理溢出问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

演示代码

import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')

import numpy as np
import matplotlib.pyplot as plt
print('_hello,inited!')

def step(x):
    return np.array(x>0,dtype=np.int)

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def reLU(x):
    return np.maximum(0, x)

x = np.arange(-5.0, 5.0, 0.1)
y1 = sigmoid(x)
y2 = step(x)
y3 = reLU(x)


plt.plot(x,y1,label='sigmoid')
plt.plot(x,y2,label='step',linestyle='--')
plt.plot(x,y3,label='reLU')
plt.title('sigmoid & step & reLU')
plt.ylim(-0.1, 1.1)
plt.legend()
plt.show()

 

结果

 

softmax函数 :

softmax 函数的输出是 0.0 到 1.0 之间的实数。并且,softmax 函数的输出值的总和是 1。输出总和为 1 是 softmax 函数的一个重要性质。正因为有了这个性质,我们才可以把 softmax 函数的输出解释为“概率”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值