opencv学习(三十六)图像直方图均衡化equalizeHist

直方图均衡化是一种通过拉伸像素强度分布以增强图像对比度的方法。它将原始图像的灰度直方图映射到更宽的分布,从而在全灰度范围内均匀分布。OpenCV中的equalizeHist函数实现了这一过程,通过计算直方图、归一化和映射来改变图像的像素强度,以提高对比度。当原始图像对比度较高时,均衡化可能会降低对比度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像直方图描述了图像中灰度值的分布情况,直方图均衡化就是通过拉伸像素强度分布范围来增强图像对比度的一种方法。如下图:
这里写图片描述

可以看到像素主要集中在中间的一些强度值上。直方图均衡化要做的就是拉伸这个范围。如下:
这里写图片描述

作途中绿色圈圈出了少有像素分布其上的强度值,对其应用均衡化后得到中间图所示的直方图,均衡化后的图像见上右图。

直方图均衡化是通过使用累积函数对灰度值进行“调整”以实现对比度的增强,其中心思想是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。也就是把一个分布(给定的直方图)映射到另一个分布(一个更宽更统一的强度值分布),所以强度值分布会在整个范围内展开,要实现均衡化的效果,映射函数应该是一个累积分布函数(cdf)。对于直方图H(i),它的累积分布H’(i)是:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值