如何理解信噪比SNR在图像中的应用

本文介绍了图像中的信噪比SNR,包括SNR的定义、计算方法及其在图像质量评价中的应用。SNR是衡量信号与噪声比例的指标,常用于评估图像处理效果,数值越大表示图像质量越好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像中的信噪比SNR

信噪比SNR的定义1

  信噪比,英文名称叫做SNR或S/N(SIGNAL-NOISE RATIO),又称为讯噪比。是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。

信噪比SNR的计算方法2

  信噪比,为有用信号功率(Power of Signal)与噪声功率(Power of Noise)的比。因此为幅度(Amplitude)比的平方:
S N R = P s i g n a l P n o i s e = ( A s i g n a l A n o i s e ) 2 SNR = \frac{P_{signal}}{P_{noise}} = (\frac{A_{signal}}{A_{noise}})^{2} SNR=PnoisePsignal=(AnoiseAsignal)2
  它的单位一般使用分贝,其值为十倍对数信号与噪声功率比:
S N R ( d B ) = 10 l o g 10 ( P s i g n a l P n o i s e ) = 20 l o g 10 ( A s i g n a l A n o i s e ) SNR(dB) = 10log_{10}(\frac{P_{signal}}{P_{noise}}) = 20log_{10}(\frac{A_{signal}}{A_{noise}}) SNR(dB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值