基础概念
-
Docker
Docker是一个打包、分发和运行应用程序的平台,允许将你的应用程序和应用程序所依赖的整个环境打包在一起。比如我有一个目标检测的项目,我想分享给朋友,那么他首先需要在自己的电脑上配置好显卡驱动、CUDA、CuDNN,在拿到我的项目后,还需要安装各种依赖库,最后代码还不一定跑起来。如果我是用了docker环境进行项目配置,我只需要将环境打包好后分享给朋友。他只需要安装好显卡驱动就行,什么cuda、pytorch之类的都在我分享的环境了。
-
镜像
Docker镜像里包含了你打包的应用程序及其所依赖的环境。包含应用程序可用的文件系统和其他元数据。
-
容器
Docker容器通常是一个Linux容器,基于Docker镜像被创建,一个运行中的容器是一个运行在Docker主机上的进程,但和主机及所有在主机上的其他进程是隔离的。其资源是受限的,只能访问和使用分配的资源(CPU、内存)。
拉取镜像
在Windows上安装Docker Desktop就不过多赘述了。
先拉取一个pytorch镜像(结合自己电脑的显卡版本挑选适合的镜像版本):
docker pull anibali/pytorch:1.13.0-cuda11.8-ubuntu22.04
准备深度学习项目
我们拿yolov5举例。
在Windwos上下载好yolov5项目代码,同时下载检查点模型。
准备好测试代码:
import torch
# Model
model = torch.hub.load('.', 'custom', path='yolov5l.pt',source='local')
# Images
img = "./pic/gyt.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.save() # or .show(), .save(), .crop(), .pandas(), etc.
创建容器
镜像我们有了,现在我们可以创建容器了。同时我们需要将深度学习项目资源拷贝到容器中,下面有两种方法。
直接拷贝
创建容器的命令是:
docker run -it