自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小毛桃的博客

专注于生物医学图像处理

  • 博客(45)
  • 资源 (3)
  • 收藏
  • 关注

原创 Python绘制美观图表方法

要让Python绘制的图表变得美观,需要结合数据可视化库的使用技巧和设计原则。来提升图表的美观度和专业性。根据具体需求,可以调整颜色、尺寸、标注等参数来满足不同的可视化需求。• 使用现代可视化库(Plotly/Altair)• 使用Seaborn的预设样式。• 添加数据标签和注释。二、常见图表美化示例。

2025-05-10 10:22:28 353

原创 使用PyTorch训练马里奥强化学习代理的完整指南

以下是使用PyTorch训练马里奥强化学习代理的完整指南,涵盖依赖库配置、环境搭建、核心代码实现及输出结果分析,结合关键优化策略与实战经验。• 作用:将输入从RGB(240x256x3)降维到灰度(84x84x1),并堆叠4帧以捕捉动态。• 注意:若使用Windows系统,需额外安装Visual C++编译工具链以支持部分库。• 后期(100万步):稳定通过第一关,最高奖励达3000+。• 中期(50万步):学会跳跃躲避障碍,奖励提升至500+• 效果:马里奥自动右移、跳跃吃金币,躲避敌人并通关。

2025-05-09 20:36:23 606

原创 对PyTorch模块进行性能分析

通过上述工具与策略,开发者可系统性地定位和解决PyTorch模型中的性能问题,实现训练速度提升和资源消耗降低的双重目标。• 吞吐量(Throughput):单位时间处理的数据量(如images/sec),受批量大小和并行度影响。• 在代码中指定输出目录,通过TensorBoard查看GPU利用率、算子耗时分布和自动瓶颈检测建议。• GPU利用率:理想情况下应接近100%,低利用率可能由数据加载或同步问题导致。• CUPTI API:底层CUDA事件追踪,适用于分布式训练场景的深度优化。文件,便于版本对比。

2025-05-09 20:24:58 1039

原创 增强学习(Reinforcement Learning)简介

• 价值函数(Value Function):预测某状态或动作的长期回报(如Q-Learning中的Q表)。• 预期效果:经过约200轮训练,智能体可稳定保持平衡超过195步(CartPole-v1的胜利条件)。• 状态(State):描述环境的当前信息(如棋盘布局、机器人传感器数据)。• 动作(Action):智能体在特定状态下可执行的操作(如移动、下棋)。• 奖励(Reward):环境对动作的即时反馈信号(如得分增加或惩罚)。• 策略(Policy):从状态到动作的映射规则(如基于Q值选择动作)。

2025-05-09 20:19:18 429

原创 MAE自监督大模型在医学报告生成中的应用

MAE(Masked Autoencoder)是一种基于图像块(patch)掩膜重建的自监督学习方法,通过随机掩盖输入图像中75%的区域,强制模型从剩余可见区域学习全局语义表征。在ViT编码器中引入金字塔结构(MAE-P),低层级捕捉纹理细节(如DWI高信号区),高层级整合全局语义(如宫旁浸润范围)。通过重建被掩盖的MRI图像区域(如宫颈癌病灶的T2WI高信号区),模型能学习器官解剖结构(如宫颈基质环完整性)与病理特征(如肿瘤浸润深度)的关联。• 问题:生成报告中“肌层浸润”与“深肌层侵犯”表述混淆。

2025-05-08 16:19:57 893

原创 MAE自监督大模型在医学报告生成中的应用

总结:MAE通过自监督预训练突破医学标注瓶颈,结合多模态对齐与知识约束生成技术,已实现从影像特征提取到结构化报告生成的全流程自动化。• 轻量化解码器:华为云团队提出基于稀疏卷积的CNN-MAE(SparK),通过分层解码器设计减少计算量,在3D医学图像分割中Dice系数提升8%。• 病灶感知掩膜:优先掩盖非关键区域(如正常组织),保留病灶核心区,强制模型学习边缘特征。• 方案:联邦学习框架(Swarm Learning)实现多中心协同训练,在子宫内膜癌研究中AUC达0.892,隐私保护等级ε=2。

2025-05-08 16:06:34 932

原创 在分类任务中,显著性分析

在二分类任务中,显著性分析主要用于验证模型性能差异、特征重要性或分类变量关联性。以上方法可满足二分类任务中模型性能、特征关联性和参数显著性的分析需求。具体实现时需根据数据分布和样本量选择合适方法。三、分类器预测一致性检验(McNemar Test)• 小样本优先使用精确检验(如Fisher精确检验)• 多重比较需校正(Bonferroni或FDR)四、参数显著性分析(Logistic回归)• 完整实现需处理数据预处理和模型训练步骤。二、特征与分类结果的关联性分析。一、模型性能差异的显著性分析。

2025-04-26 16:45:13 638

原创 二分类任务中,统计置信区间

在二分类任务中,统计置信区间的方法需根据具体场景选择合适的技术。若需进一步了解特定场景的实现细节(如多分类扩展),可参考。• 大样本:正态近似或Agresti-Coull方法(Wilson的变体)。• 小样本:优先使用Clopper-Pearson或Wilson方法。• 模型指标:推荐Bootstrap方法(如AUC、召回率)。• 提高置信水平(如99%)会扩大区间宽度,降低误判风险。二、模型评估指标的置信区间(如AUC、准确率)一、二项式比例的置信区间(适用于正类比例)三、正态近似法(大样本适用)

2025-04-26 16:40:13 473

原创 不同模型架构和任务类型对输入图像尺寸的选择

输入尺寸为 224×224,图像被分割为16×16的块(共196个),经线性映射后输入Transformer编码器。多采用 800×1333(保持宽高比)或固定尺寸(如 512×512),兼顾效率与效果。常用 512×512 或 1024×1024,高分辨率可保留细节,提升分割精度。输入尺寸灵活,如 320×320(快速推理)或 608×608(高精度检测)。• 从256×256随机裁剪224×224可提升泛化性,常见于分类任务。• 大尺寸(如1024×1024)需更高显存,可能限制批大小。

2025-04-23 10:59:22 417

原创 使用Python绘制AUC曲线(即ROC曲线)

通过上述步骤,可快速实现AUC曲线的绘制与模型性能评估。如需进一步优化图形风格(如颜色、标注),可参考。• 数据集需包含真实标签(二分类:0/1)和模型输出的预测概率值(连续值)。• ROC曲线适用于二分类,多分类需使用One-vs-Rest策略生成多条曲线。:根据业务需求调整阈值(如医疗诊断需高TPR,风控需低FPR)。• 若AUC接近0.5,说明模型与随机猜测无异。[ROC曲线示意图,AUC值标注在右下角]:在同一图中绘制多条曲线,对比不同模型性能。• 常用模型如逻辑回归、随机森林等,通过。

2025-04-18 15:28:33 1009

原创 WIN11运行游戏时出现“ms-gamingoverlay”弹框的问题

• 进入系统设置(Win+I)→ 左侧选择【游戏】→ 右侧点击【Xbox Game Bar】→ 关闭“使用控制器按钮打开Xbox Game Bar”选项。• 继续在“游戏”设置中,选择【屏幕截图/摄像】→ 关闭“录制游戏过程”“录制音频”等所有相关选项。• 确保系统为最新版本(设置→Windows更新),并重新安装游戏以修复可能损坏的文件。• 游戏运行时,通过任务管理器(Ctrl+Shift+Esc)关闭占用资源的非必要进程。• 将“启用或禁用游戏录制”设置为“已禁用”,重启电脑生效。

2025-04-17 19:24:30 3239

原创 PyTorch的benchmark模块

精确测量代码运行时间,支持CPU/GPU时间统计,并自动处理CUDA异步执行的同步问题。:包含ResNet、Transformer、YOLO等主流模型,支持自定义数据集。:对比不同实现(如原生PyTorch vs TorchScript)的性能差异。:测试前需固定PyTorch版本、CUDA版本和硬件驱动,避免结果波动。:检查PyTorch版本升级后的性能变化(如1.12→2.0)。:测试模型在CPU/GPU/TPU上的性能表现,指导部署选型。,在反向传播时重新计算中间结果而非存储,适用于大模型训练。

2025-04-16 21:28:38 1119

原创 在PyTorch中,使用不同模型的参数进行模型预热

在PyTorch中,使用不同模型的参数进行模型预热(Warmstarting)是一种常见的迁移学习和加速训练的策略。通过以上方法,可以灵活实现模型参数的迁移和初始化优化,显著提升训练效率。允许忽略源模型与目标模型之间不匹配的键(如不同层名或结构差异),仅加载匹配的参数,未匹配的层保持随机初始化。:加载预训练模型的骨干网络(如ResNet),替换分类头后微调。:当目标模型新增或删减部分层时,保留共有层的预训练参数。:例如,将图像分类模型的特征提取层用于目标检测任务。:使用字符串替换适配目标模型的层名。

2025-04-16 21:23:33 485

原创 Prediction of recurrence risk in endometrial cancer with multimodal deep learning

HECTOR模型通过。

2025-04-15 11:27:11 672

原创 SimpleITK (sitk) 中查看 DICOM 文件的像素位深(8位或16位)

存储原始数据(如 CT 的 HU 值),但部分设备可能输出 8 位图像(如部分超声或 X 光片)。通过以上方法,可以准确判断 DICOM 文件的像素位深,并根据需求进行后续处理。若需调整位深(如归一化到 8 位),可结合窗宽窗位进行动态范围压缩(参考。(范围通常为 -32768~32767 或 0~65535)。将图像数据转为 NumPy 数组后,通过。方法获取像素类型标识符,再通过。加载文件,生成图像对象。DICOM 文件通常使用。

2025-04-14 20:58:03 306

原创 DICOM文件分类

【代码】DICOM文件分类。

2025-04-14 20:01:21 194

原创 在Ubuntu系统中运行Windows程序

通过虚拟化技术(如VirtualBox)在Ubuntu中创建Windows虚拟机。:通过模拟Windows API环境直接运行.exe文件,无需安装完整系统。安装依赖库(如.NET Framework、Visual C++)提升兼容性。• 虚拟机需启用BIOS中的虚拟化功能(如Intel VT-x或AMD-V)• 复杂程序(如Office、Photoshop)可能存在兼容性问题。• 支持直接调用Linux硬件(如打印机、USB设备)• 资源占用低,适合运行简单工具(如单文件程序)

2025-04-14 11:24:54 978

原创 Python将DICOM(.dcm)文件转换为NIfTI(.nii)格式

具体实现时,推荐优先使用SimpleITK或dcm2niix,二者均已解决大部分DICOM兼容性问题。• 支持多平台(Windows/Linux/macOS)和高效压缩。:需要直接集成到Python流程中,支持批量处理和3D重建。• 适合处理多模态数据(如MRI的T1/T2序列):需要BIDS格式元数据或处理复杂DICOM标签。• 支持压缩输出(.nii.gz)和方向校准。• 处理方向信息更准确(如强制RAS坐标系)• 需手动处理方向仿射矩阵(参考DICOM的。• 适合需要修改体素分辨率或坐标系的场景。

2025-04-14 11:01:46 645

原创 Ubuntu下解压ZIP压缩文件出现中文乱码问题的综合解决方案

由于ZIP格式未声明文件名编码标准,导致跨平台解压时文件名乱码。该工具支持30+种编码自动识别,解压后可保留目录结构。重启后所有unzip操作自动应用GBK编码。安装插件后,文件管理器右键解压自动处理编码。参数无效,需更新unzip或改用其他工具。长期使用推荐配置系统环境变量。编码压缩文件,而Ubuntu系统默认以。支持右键菜单解压,可手动选择编码。Windows系统默认使用。工具,若遇复杂情况可结合。

2025-04-14 10:49:22 1071

原创 C盘清理技巧

右键C盘 → 属性 → 磁盘清理 → 勾选常规项(临时文件、回收站等)→ 点击“清理系统文件” → 勾选“Windows更新清理”“传递优化文件”“旧的Windows安装”(可释放5-20GB):Win+i → 系统 → 存储 → 开启存储感知 → 配置自动清理周期(如每天删除回收站文件,每周清理临时文件)。:高级系统设置 → 性能设置 → 高级 → 虚拟内存 → 取消C盘分页文件 → 设置其他盘为“系统管理的大小”。:设置 → 系统 → 恢复 → 重置此电脑(保留文件)。

2025-04-11 17:01:14 725

原创 Transparent medical image AI via an image–text foundation model grounded in medical literature

MONET模型通过。

2025-04-11 11:07:02 1036

原创 A vision–language foundation model for precision oncology

MUSK模型通过统一掩码建模与病理学优化,实现了多模态数据的高效融合,将AI驱动的肿瘤决策从"单一诊断"推向"全周期管理"。

2025-04-11 10:06:36 666

原创 主流的MRI基础模型及其对应的GitHub开源地址

图像分割多模态诊断重建与仿真如需探索更多项目,可关注以下领域:•联邦学习框架:适用于多中心MRI数据隐私保护场景•生成式模型:如MRI到CT的跨模态合成(参考OpenMEDLab的合成数据策略)•轻量化部署:针对移动端或边缘设备的优化模型可进一步访问上述GitHub仓库获取代码和预训练模型。

2025-04-10 16:39:24 375

原创 2022-2025年间与MRI相关的重点研究

基于统一掩码建模的Transformer架构,支持MRI影像与病理文本联合训练,在肝脏MRI的LI-RADS特征提取中准确率达0.85以上。:支持跨7种解剖部位(包括脑部、脊柱等)和9种成像模态(含MRI)的病例级诊断,整合ICD-10疾病编码与医学知识图谱,实现多模态联合推理。:结合PSAD与多参数MRI(mp-MRI)的定量指标(ADC值、动态增强参数),构建CSPCA诊断模型,AUC达0.955。:基于BERT和BioBERT的NLP模型,从MRI放射报告中预测IDH突变状态,AUC达0.86。

2025-04-10 15:17:27 744

原创 医学图像与自由文本结合诊断的开源项目

如需特定模型的训练/推理示例代码,可进一步说明应用场景(如肺癌预后预测或糖尿病视网膜病变检测),我将提供针对性代码片段。:基于统一掩码建模的Transformer架构,支持病理图像与临床文本联合训练,实现预后预测与免疫治疗响应评估。:开源多模态模型,支持影像+临床+遗传信息推理,含动态权重融合与低幻觉率优化。:整合3D影像与长文本上下文理解,支持放射报告生成与多源数据诊断。:通用医学图像-文本预训练框架,适配CT/X光/病理多模态任务。:支持40+癌症类型的多模态诊断,含全场图与镜下视野融合模块。

2025-04-10 10:10:25 389

原创 如何禁用 PyCharm 的测试功能

禁用 PyCharm 的测试功能可通过全局设置删除配置或文件命名规避实现。推荐优先使用方法一全局禁用,若需保留部分测试能力,再结合方法二按需调整。如需恢复测试功能,重新选择测试框架即可。

2025-04-09 15:30:25 566

原创 基金的分类与如何选择基金

基金分类是投资决策的基础,选择时需结合个人目标、风险偏好和市场动态。保守投资者可侧重债基与货币基金,进取型可配置指数基金或行业主题基金,同时关注费用、规模和历史业绩。长期来看,分散化、定投和全球化配置是应对市场波动的有效策略。

2025-04-09 15:07:38 1164

原创 火狐浏览器和chrome浏览器的优劣势对比

扩展生态•Chrome:扩展库庞大(Chrome Web Store 超 20 万款扩展),但审核宽松导致部分扩展捆绑广告或返利。•Firefox:扩展数量较少,但审核严格(如广告拦截扩展 ABP 在 Firefox 上采用更彻底的屏蔽机制),且支持深度脚本定制(如 Greasemonkey)。界面与功能定制•Firefox:支持超过 7000 种主题和工具栏自由布局,可高度模拟 Chrome 外观或打造独特风格。•Chrome:界面简洁但可塑性较弱,用户需依赖扩展实现复杂功能。场景。

2025-04-09 10:54:42 774

原创 医学图像和自由文本结合的研究

关于医学图像与自由文本结合的研究,近年来取得了显著进展,尤其在多模态人工智能模型的开发和应用方面。

2025-04-08 16:32:54 761

原创 大规模数据集mBRSET

mBRSET通过。

2025-04-08 11:33:48 288

原创 A Foundation Model for Generalizable Disease Detection from Retinal Images

RETFound通过自监督学习与多任务迁移,实现了视网膜影像的通用疾病检测,标志着医学AI从“单任务专用”向“基础模型驱动”的范式转变。其核心贡献在于。

2025-04-08 10:41:08 303

原创 VFMGL轻量化医学基础模型

VFMGL框架为医学影像分析提供了一种高效、隐私安全的解决方案,其“轻量化+联邦协同”范式或将成为医疗AI领域的新标准,推动精准医疗从单点突破向系统化落地迈进。

2025-04-07 11:16:10 355

原创 A data-efficient strategy for building high-performing medical foundation models

• 通过监督微调(如添加多层感知机MLP),将模型迁移至糖尿病视网膜病变分级、青光眼诊断等具体任务,显著降低标注需求(部分任务仅需40%标注数据)。:基于Stable Diffusion模型,以疾病标签为文本条件生成视网膜图像,模拟真实数据的生理结构(如血管、视盘)和病理特征(如出血、渗出)。• 在9个公共数据集上的4项任务(糖尿病视网膜病变分级、青光眼诊断等)中,性能与全数据训练的RETFound相当或更优(AUROC提升3-5%)。:过度依赖合成数据可能导致模型偏差,需结合真实性验证和动态更新机制。

2025-04-07 10:59:56 613

原创 静电累积导致电脑无法开机

当机箱外壳或主板上的静电电压超过阈值时,会触发主板BIOS的静电保护机制,导致无法完成开机自检(POST)或电源无法启动。• 测试接地电阻:普通住宅建议≤4Ω,机房需≤1Ω(可用万用表测量地线与零线间电压,应<5V)• 用带绝缘皮的导线连接机箱金属部分与金属水管/暖气管(需确认管道已做等电位联结)• 将导线一端固定于机箱螺丝,另一端压在地板重物下(如金属桌腿)• 佩戴防静电手环(1MΩ电阻型,接地端插入插座PE孔)• 接触电脑前触摸接地的金属物体(如未上漆的暖气片)

2025-04-03 10:33:53 1344

原创 在Windows系统中让Python程序在失去焦点后仍全速运行

在Windows系统中让Python程序在失去焦点后仍全速运行,需结合系统资源分配优化和程序自身调整。

2025-04-03 09:56:53 562

原创 MRI基础模型BME-X

该研究为MRI图像处理提供了全新的基础框架,相关成果发表于《Nature Biomedical Engineering》,并获2024年度医学影像技术创新奖。

2025-04-02 15:24:18 1014

原创 PyTorch中如何避免梯度累积导致的显存溢出

PyTorch中避免梯度累积导致的显存溢出

2025-04-02 11:10:20 406

原创 股票价格的形成

股票价格的形成是市场供需关系、公司基本面、宏观经济、投资者心理等多因素共同作用的结果,其涨跌反映了这些因素动态博弈的过程。

2025-04-02 10:39:53 403

原创 ResNet50和BERT的双向交叉注意力

在ResNet50和BERT的交叉注意力计算中,维度变换的核心在于对齐两个模型的特征空间,使其能够通过注意力机制进行交互。

2025-04-02 10:31:56 739

原创 债券价格剧烈波动原因分析

债券价格剧烈波动原因分析

2025-04-02 10:15:03 442

Caffe接口使用模板

一个配置好的caffe接口使用模板,分享出来供大家使用。caffe采用Microsoft caffe ,第三方库采用Nuget版本。

2016-10-31

vimrc配置文件

vim的配置文件,使用时请重命名为.vimrc,并放置于当前用户目录下。

2016-09-03

vim配置文件

vim配置文件

2016-09-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除