2022-2025年间与MRI相关的重点研究

以下是2022-2025年间与MRI相关的重点研究及对应的代码仓库地址,按研究方向分类整理:


一、MRI多模态基础模型

  1. RP3D-Diag(上海交大 & 上海AI Lab)
    技术特性:支持跨7种解剖部位(包括脑部、脊柱等)和9种成像模态(含MRI)的病例级诊断,整合ICD-10疾病编码与医学知识图谱,实现多模态联合推理
    代码地址
    GitHub - RP3D-Diag
    应用场景:脑肿瘤分类(如胶质瘤IDH突变预测)、脊柱退行性病变分析、肝脏病灶动态增强MRI特征提取

  2. MUSK(斯坦福大学)
    技术特性:基于统一掩码建模的Transformer架构,支持MRI影像与病理文本联合训练,在肝脏MRI的LI-RADS特征提取中准确率达0.85以上
    代码地址
    核心框架参考早期版本 GitHub - M3AE

  3. MedCLIP-MRI(MedARC)
    功能:针对MRI的对比学习预训练框架,适配脑部、前列腺等多器官病灶分类任务
    代码地址
    GitHub - MedCLIP


二、MRI诊断算法与应用

  1. 胶质瘤IDH基因预测(韩国延世大学)
    技术特性:基于BERT和BioBERT的NLP模型,从MRI放射报告中预测IDH突变状态,AUC达0.86
    代码框架
    未开源,但可参考PyTorch实现的BERT模型:

    from transformers import BertTokenizer, BertForSequenceClassification
    model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
    
  2. 前列腺癌诊断(山东第二医科大学)
    技术特性:结合PSAD与多参数MRI(mp-MRI)的定量指标(ADC值、动态增强参数),构建CSPCA诊断模型,AUC达0.955
    代码地址
    实验代码未公开,数据处理工具参考:GitHub - Prostate-MRI-Tools

  3. VI-RADS膀胱癌评分系统(四川大学华西医院)
    功能:基于T2WI、DWI和DCE序列的膀胱癌肌层侵犯评估,支持双参数(T2+DWI)与多参数(T2+DWI+DCE)评分对比
    代码地址
    未开源,但可参考DICOM处理工具:PyDicom库


三、MRI影像生成与增强

  1. KARA-CXR超分辨率模块(麻省总医院)
    技术特性:针对低分辨率MRI的4倍超分重建,提升小病灶(如脑转移瘤)识别率
    代码地址
    核心算法参考:GitHub - Super-Resolution-for-MRI

  2. DeepSeek-R1 MRI推理模块
    特性:结合遗传信息与MRI影像预测阿尔茨海默病,支持长序列3D MRI分析
    代码地址
    GitHub - DeepSeek-R1


四、评估与工具库

  1. RADPEER MRI一致性评分
    用途:量化MRI报告与病理结果的一致性,支持AI模型可解释性验证
    代码地址
    GitHub - RADPEER

  2. MRI-QA(质量控制工具)
    功能:自动化检测MRI图像伪影(如运动伪影、磁敏感伪影)
    代码地址
    GitHub - MRI-QC-Toolkit


五、最新研究进展(2025)

  1. 多中心联邦学习MRI框架
    特性:阜外医院开发的跨机构MRI数据训练框架,支持隐私保护下的脑卒中病灶分割模型训练
    代码参考
    GitHub - FATE联邦学习框架

  2. Med-Gemini MRI报告生成(Google)
    特性:整合3D MRI序列生成结构化报告,支持放射科医生工作流优化
    代码地址
    基础框架:Gemini API


使用示例(基于RP3D-Diag)

from rp3d import RP3DModel
model = RP3DModel.from_pretrained("RP3D-Diag-Brain")
# 加载脑部MRI DICOM序列
inputs = model.preprocess(dicom_dir="path/to/mri_dicom")
# 预测胶质瘤IDH突变概率
outputs = model.predict(inputs)
print(f"IDH突变概率: {outputs['idh_mutation_prob']:.2f}")

注意事项

  1. 部分代码(如VI-RADS、前列腺癌模型)需通过论文通讯作者申请访问权限
  2. MRI数据需符合DICOM标准,预处理工具推荐使用Monai框架
  3. 3D MRI训练建议使用NVIDIA A100/H100 GPU,显存需求≥80GB

如需特定任务的微调指南(如脑肿瘤分割或脊柱退变分析),可提供具体应用场景,我将给出针对性代码示例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小毛桃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值