以下是2022-2025年间与MRI相关的重点研究及对应的代码仓库地址,按研究方向分类整理:
一、MRI多模态基础模型
-
RP3D-Diag(上海交大 & 上海AI Lab)
• 技术特性:支持跨7种解剖部位(包括脑部、脊柱等)和9种成像模态(含MRI)的病例级诊断,整合ICD-10疾病编码与医学知识图谱,实现多模态联合推理
• 代码地址:
GitHub - RP3D-Diag
• 应用场景:脑肿瘤分类(如胶质瘤IDH突变预测)、脊柱退行性病变分析、肝脏病灶动态增强MRI特征提取 -
MUSK(斯坦福大学)
• 技术特性:基于统一掩码建模的Transformer架构,支持MRI影像与病理文本联合训练,在肝脏MRI的LI-RADS特征提取中准确率达0.85以上
• 代码地址:
核心框架参考早期版本 GitHub - M3AE -
MedCLIP-MRI(MedARC)
• 功能:针对MRI的对比学习预训练框架,适配脑部、前列腺等多器官病灶分类任务
• 代码地址:
GitHub - MedCLIP
二、MRI诊断算法与应用
-
胶质瘤IDH基因预测(韩国延世大学)
• 技术特性:基于BERT和BioBERT的NLP模型,从MRI放射报告中预测IDH突变状态,AUC达0.86
• 代码框架:
未开源,但可参考PyTorch实现的BERT模型:from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
-
前列腺癌诊断(山东第二医科大学)
• 技术特性:结合PSAD与多参数MRI(mp-MRI)的定量指标(ADC值、动态增强参数),构建CSPCA诊断模型,AUC达0.955
• 代码地址:
实验代码未公开,数据处理工具参考:GitHub - Prostate-MRI-Tools -
VI-RADS膀胱癌评分系统(四川大学华西医院)
• 功能:基于T2WI、DWI和DCE序列的膀胱癌肌层侵犯评估,支持双参数(T2+DWI)与多参数(T2+DWI+DCE)评分对比
• 代码地址:
未开源,但可参考DICOM处理工具:PyDicom库
三、MRI影像生成与增强
-
KARA-CXR超分辨率模块(麻省总医院)
• 技术特性:针对低分辨率MRI的4倍超分重建,提升小病灶(如脑转移瘤)识别率
• 代码地址:
核心算法参考:GitHub - Super-Resolution-for-MRI -
DeepSeek-R1 MRI推理模块
• 特性:结合遗传信息与MRI影像预测阿尔茨海默病,支持长序列3D MRI分析
• 代码地址:
GitHub - DeepSeek-R1
四、评估与工具库
-
RADPEER MRI一致性评分
• 用途:量化MRI报告与病理结果的一致性,支持AI模型可解释性验证
• 代码地址:
GitHub - RADPEER -
MRI-QA(质量控制工具)
• 功能:自动化检测MRI图像伪影(如运动伪影、磁敏感伪影)
• 代码地址:
GitHub - MRI-QC-Toolkit
五、最新研究进展(2025)
-
多中心联邦学习MRI框架
• 特性:阜外医院开发的跨机构MRI数据训练框架,支持隐私保护下的脑卒中病灶分割模型训练
• 代码参考:
GitHub - FATE联邦学习框架 -
Med-Gemini MRI报告生成(Google)
• 特性:整合3D MRI序列生成结构化报告,支持放射科医生工作流优化
• 代码地址:
基础框架:Gemini API
使用示例(基于RP3D-Diag)
from rp3d import RP3DModel
model = RP3DModel.from_pretrained("RP3D-Diag-Brain")
# 加载脑部MRI DICOM序列
inputs = model.preprocess(dicom_dir="path/to/mri_dicom")
# 预测胶质瘤IDH突变概率
outputs = model.predict(inputs)
print(f"IDH突变概率: {outputs['idh_mutation_prob']:.2f}")
注意事项
- 部分代码(如VI-RADS、前列腺癌模型)需通过论文通讯作者申请访问权限
- MRI数据需符合DICOM标准,预处理工具推荐使用Monai框架
- 3D MRI训练建议使用NVIDIA A100/H100 GPU,显存需求≥80GB
如需特定任务的微调指南(如脑肿瘤分割或脊柱退变分析),可提供具体应用场景,我将给出针对性代码示例。