下载完labelimg后,在cmd先激活先前配置好的conda环境(yolov5),在里面启动labelimg
打开后如下
在里面对训练集以及验证集中的每个图片进行标注
用vscode来打开yolov5的文件夹
在data里面找到一个yaml文件将它进行复制,修改里面的参数为,0:cat,1:dog。并修改他的路径,包括训练集和验证集的文件夹。
接下来打开train.py。在里面找到这行代码,将data的路径改为我们刚才新建的yaml文件。
点击运行即可训练出权重文件
可以在runs里面的tarin文件夹中,找到每次训练的结果,里面就包括权重文件“weights”还有一些训练过程中各项数据的图表。