[leetcode]198. 打家劫舍

本文探讨了如何使用动态规划解决打家劫舍问题,通过避免触发相邻房屋的报警系统,实现最大化的盗窃金额。提供了Java和Python代码示例,详细解释了动态规划的思路和算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目 198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

方法一 动态规划

  • 如图

在这里插入图片描述

java
class Solution {
    public int rob(int[] nums) {
        int len = nums.length;

        if (len == 0) {
            return 0;
        }
        if (len == 1) {
            return nums[0];
        }

        int[] dp = new int[len];

        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);

        for (int i = 2; i < len; i++) {
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
        }

        return dp[len - 1];
    }
}
python
class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        len_nums = len(nums)

        if not nums: # 当没有可抢房间
            return 0
        if len_nums == 1: # 当只有一家可抢
            return nums[0]

        dp = [0] * len_nums

        dp[0] = nums[0]
        dp[1] = max(nums[0],nums[1])

        for i in range(2,len_nums):
            dp[i] = max(dp[i-1],dp[i-2]+nums[i])
        return dp[len_nums-1]
  • 如果你觉得本文对你有帮助,请点赞👍支持
  • 如果有疑惑或者表达不到位的额地方 ,请在下面👇评论区指出
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值