- 博客(1017)
- 资源 (1)
- 问答 (3)
- 收藏
- 关注

原创 机器学习 专栏
随着现在以ChatGPT为代表的大模型发展,人工智能、机器学习、大模型 这些词逐渐火热起来了,所以是时候了解一下这些东西了,可能有的人会说不会太晚了吗,其实不晚,因为我们从来都是技术的创造者,只是技术的使用者而已,在一定程度上来说,及时的学会使用,对普通人来说就足以过上不错的日子。但是伴随着老的生产力的落幕,必然有新的生产力出现,否则整个社会的发展就陷入了停滞,其实我们可以看到现在的AI 发展的这么快,每一轮的技术发展都会有一二十年的生命周期,我们只能说传统互联网走到了夕阳西下的时候。
2024-03-30 13:11:30
171006

原创 数据仓库实战教程
以hadoop 作为基础生态,从0到进行数仓建设,主要分为基础篇和实战篇两部分,基础篇主要是各种组件的学习和案例,实战篇主要是三家企业的数仓设计案例,最后是扩展篇主要是实时数仓。
2020-12-28 09:19:07
224176
18

原创 Java集合汇总篇
一. 集合框架Java 集合框架一些列的接口和类来实现很多常见的数据结构和算法,例如 LinkedList 就是集合框架提供的实现了双向链表的数据结构,关于这一篇文章建议大家收藏,我会不断地完善和扩充它的内容,例如最下面的系列文章我以后也会对它进行不断的更新集合框架的接口集合框架提供了很多接口,这些接口都包含了特定的方法来实现对集合上的特定操作)我们将要学习这些接口以及子接口和它们的各种实现类,在开始之前我们先简单学习一下这些广泛运用的接口,可以看到整个集合框架,总共有三个顶级接口Collecti
2020-12-13 20:25:05
223874
3
原创 大模型——使用本地大模型提取发票信息
Ollama是一款开源应用程序,可让您使用 MacOS、Linux 和 Windows 上的命令行界面在本地运行、创建和共享大型语言模型。Ollama 可以直接从其库中访问各种 LLM,只需一个命令即可下载。下载后,只需执行一个命令即可开始使用。这对于工作量围绕终端窗口的用户非常有帮助。如果他们被困在某个地方,他们可以在不切换到另一个浏览器窗口的情况下获得答案。
2025-07-18 07:49:49
252
原创 大模型——神级的编程工具 Kiro 来了,吊打cursor
Kiro:下一代AI驱动的智能开发工具 Kiro是一款革命性的AI编程助手,采用Spec-Driven Development(需求驱动开发)理念,帮助开发者从灵感到部署实现全流程管理。其核心功能包括: Specs智能需求分析:自动将模糊需求拆解为详细用户故事,补充边界条件,生成开发指导手册 Hooks自动化工作流:在代码提交、API修改等场景自动执行测试更新、文档同步、安全检查等操作 三步开发流程:从需求生成→系统设计→任务执行,保持规格与代码同步,解决文档过时问题 Kiro目前处于限免预览阶段,支持多平
2025-07-18 07:47:59
158
原创 大模型——Gemini CLI一比一复刻Claude Code
这次复刻也不讲什么武德了,从界面到功能,完完全全的照搬Claude Code,从仓库的提交历史上来看,复刻的过程其实已经持续了近一个月,40个贡献者有近1000次的疯狂commit提交。后来就越用越上头,越写越来劲了,临到睡前,又用 GC写了一个GC自己的说明书,实时同步官方文档,自动翻译。首先是超大上下文,近100万 Token 窗口,中大型项目的代码库一口气吞完,这就是GC对比CC的一记绝杀,分析架构还是大规模重构轻松应对。哈哈哈,看起来 AI 写的代码,也需要人类来 Review 和修复啊。
2025-07-17 07:23:33
134
原创 大模型——RAG 的性能评估
RAG系统评估需关注检索与生成两大环节的关键指标。检索质量包括上下文相关性(判断信息与问题匹配度)、召回率(确保关键信息不遗漏)和精度(衡量有用信息占比)。生成质量则评估答案忠实性(是否基于检索内容)和相关性(是否准确回应问题)。这些无参考指标能有效评估系统性能,避免因未经全面测试导致的信息不准确或误导性输出问题,对高要求应用场景尤为重要。
2025-07-17 07:22:30
17
原创 AI + 向量检索,做一个懂你的推荐服务
AI+向量检索构建智能图标推荐系统 本文介绍了一种结合大语言模型(LLM)和多模态向量检索技术的智能图标推荐方案。系统通过LLM深度解析用户文本,提取可视化关键词并翻译为英文;利用CLIP模型将文本和图标编码到同一语义向量空间;采用HNSW算法实现毫秒级向量检索;支持混合查询(语义匹配+条件过滤)。实践表明,该系统能有效解决传统关键词检索在图文匹配中的语义鸿沟问题,实现从抽象概念到具象图标的精准推荐。评估采用人工+AI结合的评测体系,验证了推荐效果在实际业务场景中的优越性。
2025-07-16 13:15:13
163
原创 大模型——AI对话四象限
{ "摘要": "文章揭示了90%的人不会有效与AI沟通的问题,指出简单粗暴的提问只能得到标准答案。作者提出'AI对话四象限'模型:1)双方都懂时提效;2)AI懂但需学会分层提问;3)共同探索未知领域;4)向AI传授独家知识。强调沟通技巧的重要性,认为会提问的人不会被AI替代。最后呼吁读者尝试四象限思维,与AI碰撞火花。" }
2025-07-16 13:14:01
26
原创 大模型——AI大模型落地最后一公里:RAG
本文探讨了AI大模型落地应用中的关键环节——RAG(检索增强生成)技术。文章指出,专属智能体的生产力价值主要取决于其私有知识库的质量和处理水平。通过比喻将LLM比作"超级大脑",私有知识库比作"记忆库",强调二者结合的重要性。RAG系统通过"先检索后生成"的工作机制,为模型提供外部资料库和高效检索能力,有效降低模型幻觉风险,使回答基于最新、特定和非公开数据。文章还展示了RAG系统的结构流程和基于LangChain的增强版实现方案,建议读者根据实际需
2025-07-10 09:16:03
115
原创 大模型——别让 AI 替你思考,让它陪你学习
AI 已经具备了极强的信息处理能力。特别是像 Gemini 这样的模型,不仅拥有超长的上下文窗口,其在语义理解方面也表现出一些让我惊喜的品质:清晰、锋利且具有一定深度。我曾感慨说:Gemini 是一个内容制造怪兽。它似乎永不满足,渴望人类给它投喂更多、更优质的信息。它会将这些信息全部「嚼碎」,消化掉,然后按照你期望的形式,为你制造出内容。面对庞杂的材料和巨大的信息量,人类的认知加工系统或许会陷入瘫痪,但 AI 却能游刃有余地应对。那么,作为人类,我们该如何驾驭这台高能的思考机器呢?
2025-07-10 09:13:15
244
原创 大模型——如何构建高效的 Agents
摘要: 本文探讨了基于大语言模型(LLM)的代理系统构建方法。作者区分了工作流(预定义路径)和代理(动态决策系统),建议优先选择简单方案,仅在必要时增加复杂度。核心模式包括增强型LLM、提示链、路由、并行化、编排者-执行者和评估者-优化者工作流,适用于不同场景。代理系统适合开放性问题,但需权衡成本与风险。强调工具设计的重要性,并建议避免过度依赖框架,通过直接使用API实现灵活组合。附录提供了工具开发和安全防护的实践指南。
2025-07-09 08:56:44
157
原创 大模型系列——Pollinations.AI:提供完全免费的AI内容生成
Pollinations.AI是一个开源免费的AI内容生成平台,提供文本、图像、音频等多种生成和转换API。该平台无需注册即可使用,支持Flux/Turbo等先进模型,开发者可通过URL直接调用API或使用Python SDK集成。主要功能包括文生图、文生音频、音转文等,并提供OpenAI兼容接口。平台操作简单,既适合开发者快速集成,也方便普通用户直接使用网页版生成内容。Pollinations.AI以开源方式推动AI内容创作民主化,让每个人都能轻松获取AI生成能力。
2025-07-09 08:52:56
101
原创 大模型——Dify中的MCP相关插件及FastMCP服务实现原理
摘要:本文介绍了Dify平台中的MCP相关插件实现原理,主要包括4类插件:扩展插件(将Dify应用发布为MCP服务)、工具插件(调用MCP服务)、Agent策略插件(支持FunctionCalling和ReAct策略)以及垂直领域应用插件。重点分析了6个核心插件的功能和使用方式,包括MCP服务发布、兼容性转换、客户端调用等机制,为开发者提供了Dify平台与MCP协议集成的技术参考。
2025-07-08 21:01:44
199
原创 大模型——基于业务知识和代码库增强的大模型生成代码实践
《基于业务知识与代码库的大模型智能开发实践》 摘要:本文记录了一位互联网公司研发新人李明通过结合大模型技术与业务知识库,解决开发过程中文档缺失、知识孤岛等痛点的实践。文章分三个阶段介绍了该方案的演进:STAGE-1基础提示词应用;STAGE-2构建知识关联系统,通过整合需求文档、代码变更记录和常见问题库,实现业务知识快速检索;STAGE-3深度集成代码与需求,利用GitHub API等技术自动关联代码与需求文档,形成可查询的知识图谱。实践表明,该方法有效降低了新人学习成本,提高了开发效率,为技术团队的知识沉
2025-07-08 20:58:03
44
原创 大模型——Pollinations.AI:提供完全免费的AI内容生成
Pollinations.AI是一个开源免费的AI内容生成平台,提供文本、图像、音频等生成和转换API。该平台无需注册即可使用,支持Flux/Turbo等模型,开发者可通过简单URL调用API或使用Python SDK。特色包括OpenAI兼容接口、实时生成动态和浏览器开发环境,适合快速构建AI应用。用户可通过Web端或API实现图像生成、文本转语音等功能,代码示例展示了如何调用各接口。作为瑞士团队开发的开源项目,Pollinations.AI为内容创作提供了"AI核动力"解决方案。
2025-07-06 23:13:36
142
原创 大模型——Prompt:让你的工作价值被看见,述职时从6分表达到10分价值的完整指南
摘要:职场中,许多人做了10分的工作却只能表达出6分的价值。本文提供了一套完整的工作价值提炼系统,通过7个步骤(多维价值解析、价值重构与放大、价值量化与对比、战略关联与提升、表达优化与对比、情境适配与叙事技巧、价值提炼模板)帮助用户将工作成果转化为高影响力的价值陈述。系统包含具体示例、量化方法、战略关联技巧和不同场景下的表达建议,旨在让真实的工作价值被充分看见和认可,而非过度包装。
2025-07-04 09:34:24
221
原创 大模型——Dify对接NextChat中的具体操作和原理
摘要: 本文介绍了如何通过OpenAI Compatible Dify App插件将Dify应用API转换为OpenAI兼容模式,并集成到NextChat中。具体步骤包括:1)配置Dify的Chatflow示例并安装插件;2)修改NextChat源码的配置文件,解决CORS问题;3)实现流式与阻塞两种响应模式的核心原理,通过_invoke()方法处理认证、参数验证及消息记忆模式(支持最后一条或全部消息)。该方案使NextChat能兼容Dify接口,支持Markdown等丰富渲染功能。
2025-07-04 09:31:29
140
原创 大模型——基于 Ollama 多模态引擎的 Qwen 2.5 VL 模型部署及其应用
Ollama多模态引擎赋能Qwen 2.5 VL模型本地部署 Ollama推出的全新多模态引擎解决了原有架构在多模态模型支持上的局限,为Qwen 2.5 VL等模型提供了更可靠的运行环境。该引擎采用模块化设计,确保每个模型独立运行,忠实还原训练时的处理逻辑,同时优化了图像处理精度和内存管理。 Qwen 2.5 VL作为通义千问的旗舰视觉语言模型,具备图像文本识别、视频理解、视觉定位等能力。通过Ollama引擎本地部署后测试显示,该模型能准确描述图片内容,识别动物特征,但在某些细节(如动物数量)和特定食物识别
2025-07-02 11:13:08
100
原创 大模型——输入水果名生成10w+AI切水果爆款视频!新号0粉小红书连爆2条
AI切水果视频爆火!教你用Coze工作流一键生成10w+爆款视频 近期AI切水果视频在各大平台爆红,单条视频轻松获赞几十万。本文提供两种生成方案:1)使用Gemini或即梦工具手动输入提示词生成;2)通过Coze工作流自动生成,只需输入水果名称即可输出提示词和视频。工作流包含颜色搭配、提示词生成、视频制作等节点,支持多种水果同时处理。新账号测试显示,该方案效果显著,半小时即获可观流量。文末提供完整工作流搭建教程,适合零基础用户快速上手。
2025-07-02 11:01:21
282
原创 大模型—— 一文带你快速入门 Llama Factory
此外,Llama Factory 还包含了模型优化的工具,如模型压缩和量化,通过这些优化手段,可以提高模型的推理效率,减少模型在运行时对资源的消耗,使其能够在更广泛的设备上高效运行。例如,在企业智能客服场景中,将企业的产品手册、常见问题解答等知识库与模型结合,当用户提出问题时,模型不仅可以利用自身学习到的语言知识和通用知识进行回答,还可以从外部知识库中获取更准确、详细的信息,从而给出更加全面、准确的回答,增强了模型回答的准确性和可靠性,为用户提供更好的服务体验。
2025-06-30 22:09:35
51
原创 大模型——怎么让 AI 写出好看有设计感的网页
本文介绍如何利用AI生成更具设计感的网页。通过分析常见AI生成网页的模板化问题(如引用边框等特征),作者推荐使用21st.dev网站的优质模板,并提供了优化提示词的方法。具体步骤包括:1)复制模板代码文件;2)发送特定提示词让AI学习模板的视觉风格、布局和动画;3)自动安装依赖。该方法能保留核心功能的同时提升网页视觉效果,避免直接复制模板导致的问题。文中还展示了优化前后的网页对比效果。
2025-06-30 22:07:55
173
原创 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
TRAE智能编程工具与Milvus向量数据库通过MCP协议实现深度集成,为开发者带来自然语言操作数据库的全新体验。MCP协议支持两种通信模式:Stdio适用于单客户端场景,而SSE模式则基于HTTP协议实现实时数据推送,完美适配现代IDE需求。文章详细介绍了环境配置、Milvus安装、MCP服务器部署以及TRAE智能体创建的完整流程,展示了如何通过自然语言指令创建和查询向量数据库集合。这种集成标志着AI开发工具正从单纯代码生成向具备企业级知识理解能力的智能开发伙伴演进,为开发者构建了从"辅助编码&
2025-06-27 08:06:38
87
原创 大模型——Dify:知识库与外部知识库
摘要 Dify的知识库功能为开发者提供了动态知识管理解决方案,超越了大模型静态预训练数据的限制。知识库支持多种文档格式(如txt、pdf、docx等),通过文档分段、索引设置和检索优化机制提升LLM的响应准确性。系统提供高质量和经济两种索引模式,前者采用向量化检索技术,后者使用关键词匹配以降低成本。知识库支持元数据管理,包括自动生成的内置元数据和用户自定义元数据,便于内容分类和检索。对于高级需求,Dify还支持连接外部知识库,通过API实现跨平台数据共享和检索优化,满足企业级知识管理需求。
2025-06-27 08:03:59
205
原创 大模型—— Gemini CLI一比一复刻Claude Code
这次复刻也不讲什么武德了,从界面到功能,完完全全的照搬Claude Code,从仓库的提交历史上来看,复刻的过程其实已经持续了近一个月,40个贡献者有近1000次的疯狂commit提交。后来就越用越上头,越写越来劲了,临到睡前,又用 GC写了一个GC自己的说明书,实时同步官方文档,自动翻译。首先是超大上下文,近100万 Token 窗口,中大型项目的代码库一口气吞完,这就是GC对比CC的一记绝杀,分析架构还是大规模重构轻松应对。哈哈哈,看起来 AI 写的代码,也需要人类来 Review 和修复啊。
2025-06-26 08:10:07
689
原创 大模型—— 从0到1落地一个RAG智能客服系统
摘要: 本文分享了从0到1落地RAG智能客服系统的实践经验。项目基于大模型API成本下降的背景,选择阿里云百炼+自主代码调度方案,兼顾中文理解、成本控制和复杂逻辑扩展性。数据预处理阶段,将说明书结构化,并用大模型批量清洗客服聊天记录生成QA对。Prompt设计强调分步骤验证、示例引导和格式约束,而多智能体协作架构(型号识别、意图分类、状态机等)提升了复杂场景处理能力。测试发现回复稳定性、上下文连贯性仍需优化,下一步将逐步上线试运行。关键挑战包括同义问题归并、模糊问法处理和非文本交互支持,需结合业务持续迭代。
2025-06-26 08:02:59
176
原创 大模型——Cursor-Agent 实战:构建端到端自动化取数工具的实践
Cursor-Agent 实战:自动化取数工具的探索与演进 本文分享了基于 Cursor-Agent 构建端到端自动化取数工具的实践经验。针对传统取数工作中存在的效率瓶颈(复杂需求耗时4-6小时),团队通过融合AI Agent技术,实现了从需求输入到结果输出的全流程自动化。核心创新包括: 端到端工作流:需求分析→业务知识查找→数据库探索→SQL编写执行→结果处理 关键组件设计: .cursorrules 规则引擎作为"大脑" Local Tools 作为执行"手脚"
2025-06-26 07:57:13
106
原创 大模型——AI在人力资源管理中九个方面的成功应用及案例
AI在人力资源管理中的九大成功应用 摘要:AI正深刻改变人力资源管理的各个方面。文章梳理了AI在HR领域的发展历程,从早期简历筛选到如今预测分析和战略决策支持。重点介绍了AI在HR的五大应用类型和九大具体场景:节省行政时间、提升招聘质量、改善员工体验、增强敬业度、支持数据决策、预测人力趋势、提高HR效率、促进多元化及加强合规管理。同时指出算法偏见、数据隐私等潜在风险,并提出8项应用策略建议。研究表明,合理应用AI可显著提升HR效率和决策质量,但需与人类专业判断相结合。
2025-06-25 07:44:21
189
原创 大模型—— 使用 Agno 构建一个基础的 AI 智能体
Agno是一个用于构建多智能体系统的全栈框架,支持从基础工具到复杂协作的五个智能等级。它提供模型无关接口、高性能推理、多模态支持、结构化输出等核心功能,能够快速构建金融分析、市场研究等应用场景。通过示例展示了如何创建单一推理智能体和多智能体协作团队,其优势包括微秒级实例化、低内存占用和并行化工具调用。Agno特别适合需要大规模部署的高性能智能体系统,可显著降低开发成本和提高执行效率。
2025-06-25 07:38:54
322
原创 大模型——Prompt Design
就像网页设计推动了 Web 产品走向结构清晰、用户友好,Prompt Design 将成为 AI 原生应用构建的根基——它不是写几段提示词,而是“搭建一个对话接口的工程系统”。有句话我很喜欢:当你越会写 Prompt,你越能表达自己的思考逻辑;当你越了解 AI 的理解边界,你越知道人类语言的模糊与珍贵。Prompt Design,看似是设计提示,其实是设计认知。写给 AI,是写作的未来。Prompt Design,是新写作的起点。
2025-06-24 07:35:22
112
原创 大模型——即将淘汰80%普通人的7项AI技能:1、提示词工程;2、AI设计;3、AI智能体;4、工作流自动化
AI时代必备的7项核心技能 摘要:随着AI技术的迅猛发展,掌握关键AI技能将成为未来竞争力的核心。本文总结了7项关键技能:1)精准的提示词工程能力;2)AI辅助设计与视觉创作;3)通过AI进行高效数据分析;4)构建AI智能体与自动化工作流;5)AI辅助编程;6)垂直领域大模型微调;7)AI驱动的全流程内容创作。这些技能相互关联,从单点应用到系统整合,使个人和小团队第一次有机会在效率上媲美传统大团队。关键在于主动学习和适应,将AI转化为生产力工具,而非被动等待被技术淘汰。
2025-06-24 07:32:21
29
原创 大模型——保姆级实操一台主机同时部署Dify和RAGFlow全流程避坑指南
本文主要介绍了在同一设备上部署Dify和RAGFlow的注意事项及具体步骤。作者提醒若设备已部署Dify,需先备份数据再部署RAGFlow,避免端口冲突导致服务异常。通过修改RAGFlow的端口配置(8081:80)解决了端口占用问题,并展示了RAGFlow的基本使用流程,包括账号注册、模型配置、应用创建和知识库管理。部署过程中Dify出现Redis错误,将其从1.4.0升级至1.4.1版本后恢复正常。文章最后预告将介绍Dify与RAGFlow的对接协作方案。
2025-06-23 07:34:21
240
原创 大模型——快速带你了解Agent和RAG
RAG技术:AI的"事实核查官" RAG(检索增强生成)技术是为解决AI"幻觉"问题而生,它通过检索外部知识库增强AI回答的准确性。RAG工作流程分为三步:检索相关文档、整合信息形成增强提示、生成最终回答。衡量RAG性能的两个关键指标是召回率(找全相关文档的能力)和忠实度(回答与原始信息的一致性)。 优化RAG系统需要从三方面入手:知识库结构化整理、采用混合检索策略提升召回率、控制生成过程降低幻觉率。此外,可以使用RAGAS框架评估RAG系统性能,包括环境配置、Emb
2025-06-23 07:30:09
42
原创 大模型—— 大白话告诉你什么是rag
摘要: RAG(检索增强生成)是一种提升大语言模型(如ChatGPT)准确性的技术,通过结合实时知识库来弥补模型知识过时和“幻觉”问题。其核心流程是:用户提问后,系统先从知识库检索相关片段,再将信息输入模型生成有依据的回答。RAG的优势包括提供最新信息、减少错误、支持专业领域知识,并增强答案的可解释性(如标注来源)。典型应用如企业智能客服,能快速从内部文档提取精准答案,显著提升效率与可靠性。
2025-06-22 22:12:08
209
原创 大模型——Spring +Milvus,Java也能实现的企业级文档问答RAG
本文介绍了一套基于Spring框架的企业级AI应用解决方案,针对文档数据孤岛问题,整合文档ETL、向量检索与RAG问答技术。系统采用Spring Boot 3.5 + Spring AI 1.0,结合百度千帆AI模型和Milvus向量存储,提供从文档处理到智能对话的全链路能力。重点突出了企业级特性:API安全控制、指标可观测性、流式响应等,并通过Docker容器化部署。项目强调工程化实践,包括文档分块处理、单文档向量化、对话记忆管理等关键技术实现,为企业数字化转型提供可落地的智能助手方案。
2025-06-22 22:06:40
56
原创 大模型——用LangChain构建PAL应用:SQL的生成与执行
摘要:基于LangChain的PAL模式实现SQL生成与执行 本文介绍了利用LangChain框架构建PAL(程序辅助语言模型)应用的完整方案。PAL模式的核心思想是将语言任务与复杂逻辑分离处理:大语言模型仅负责生成SQL查询语句,而实际执行则由外部程序完成。文章详细展示了从LLM初始化、MySQL数据库连接、State状态管理到完整流程的实现,包括SQL生成、用户确认、数据库查询和结果解释四个关键步骤。系统通过Postgres实现状态持久化,并设计了安全规范的SQL生成提示词,确保查询的合理性和安全性。该
2025-06-20 20:55:08
358
原创 大模型—— LangChain ReAct 中文解析器实现
这篇文章介绍了针对LangChainJS中ReAct模式中文解析问题的解决方案。作者开发了langchain-react-chinese-parser库,核心是自定义的QwenReActOutputParser解析器,专门适配通义千问等中文大模型的ReAct输出格式。解析器支持中英文关键字兼容、格式容错和清晰的错误提示,提供了三种集成方式:自定义Agent类集成、官方createReactAgent增强以及完全自定义Chain的高级用法。该方案无需修改LangChain核心代码,能实现零侵入、无痛切换,解决
2025-06-20 07:53:59
182
原创 大模型——ollama v0.9.2 版本发布详解:修复关键问题,提升模型兼容性
Ollama发布v0.9.2版本,重点修复三个核心问题:优化无参数调用时的异常处理机制,完善生成错误反馈系统,提升特殊token的识别兼容性。这些改进增强了接口稳定性、错误调试效率以及对多样化模型的适应能力。新版本还迎来了社区贡献者的加入,体现了开源生态的活力。此次更新虽是小版本迭代,却显著提升了工具在实际应用中的可靠性和用户体验。
2025-06-20 07:52:30
111
原创 大模型——TAPD MPC 服务 让你需求管理效率翻倍
TAPD MCP服务通过AI大模型能力重塑项目管理流程。该服务支持三个核心场景:1)AI需求拆解,可快速将模糊需求转化为精准任务;2)智能迭代管理,自动追踪进度、生成报告并归档;3)批量数据处理,无需代码实现复杂字段修改。通过与企业微信集成,还能实现风险预警自动通知。配置仅需TAPD API密钥和企业微信机器人webhook。实践证明,该服务显著提升需求管理效率,帮助团队告别人工筛选和重复操作,实现智能化项目管理。随着AI能力持续增强,MCP工具将深刻改变研发工作方式。
2025-06-18 08:09:29
126
原创 大模型——MCP Server 开发实战指南(Python版)
《Python实现MCP Server开发指南》 本文介绍了基于Python开发MCP(Model Context Protocol)服务器的完整流程。MCP是由Anthropic推出的开放标准,旨在解决LLM与外部数据源的连接问题。 开发环境配置: 使用uv工具初始化Python 3.13.2项目 安装mcp和httpx依赖包 核心代码实现: 创建FastMCP服务器实例 封装NWS天气API请求方法 开发两个核心工具: get_alerts:获取美国各州天气警报 get_forecast:获取指定经纬度
2025-06-18 08:07:05
536
想看看你们在csdn 上赚了多少钱
2025-07-07
关于枚举你都知道什么呢?
2020-12-15
有没有一个讲Java 集合的系列文章
2020-12-13
有没有一个将Java 结合的系列文章
2020-12-13
TA创建的收藏夹 TA关注的收藏夹
TA关注的人