- 博客(1030)
- 资源 (1)
- 问答 (3)
- 收藏
- 关注

原创 机器学习 专栏
随着现在以ChatGPT为代表的大模型发展,人工智能、机器学习、大模型 这些词逐渐火热起来了,所以是时候了解一下这些东西了,可能有的人会说不会太晚了吗,其实不晚,因为我们从来都是技术的创造者,只是技术的使用者而已,在一定程度上来说,及时的学会使用,对普通人来说就足以过上不错的日子。但是伴随着老的生产力的落幕,必然有新的生产力出现,否则整个社会的发展就陷入了停滞,其实我们可以看到现在的AI 发展的这么快,每一轮的技术发展都会有一二十年的生命周期,我们只能说传统互联网走到了夕阳西下的时候。
2024-03-30 13:11:30
171020

原创 数据仓库实战教程
以hadoop 作为基础生态,从0到进行数仓建设,主要分为基础篇和实战篇两部分,基础篇主要是各种组件的学习和案例,实战篇主要是三家企业的数仓设计案例,最后是扩展篇主要是实时数仓。
2020-12-28 09:19:07
224187
18

原创 Java集合汇总篇
一. 集合框架Java 集合框架一些列的接口和类来实现很多常见的数据结构和算法,例如 LinkedList 就是集合框架提供的实现了双向链表的数据结构,关于这一篇文章建议大家收藏,我会不断地完善和扩充它的内容,例如最下面的系列文章我以后也会对它进行不断的更新集合框架的接口集合框架提供了很多接口,这些接口都包含了特定的方法来实现对集合上的特定操作)我们将要学习这些接口以及子接口和它们的各种实现类,在开始之前我们先简单学习一下这些广泛运用的接口,可以看到整个集合框架,总共有三个顶级接口Collecti
2020-12-13 20:25:05
223888
3
原创 大模型——如何用AI Coding和提升开发效率
摘要: 本文分享了利用AI Coding工具(特别是Claude Code)提升开发效率的实践经验。作者强调高质量Prompt工程的重要性,建议通过结构化描述需求(如COSTAR框架)提升AI输出质量,并合理划分任务边界:对能力范围内的任务优先交给AI,复杂任务需结合人工审核。此外,提出"小步快跑"策略,通过模块化开发、代码审查和单元测试确保可靠性,同时管理上下文长度以避免幻觉。文中还总结了实用技巧,如频繁提交Git记录、压缩关键信息、利用外部记忆工具等,最终指出为AI建立项目知识库是长
2025-07-30 09:06:13
4
原创 大模型——Trae、Cursor、Kiro到底孰强孰弱
本文对比了三种AI编程工具Trae、Cursor和Kiro的特点与优劣。作者作为三款工具的资深用户,指出Trae擅长函数级代码补全但项目级能力有限;Cursor项目级开发表现优异但需善用规则设置;Kiro通过分步文档生成功能更规范但稳定性较差。在资费方面,Kiro目前免费但未来定价19美元/月,Cursor 20美元/月,Trae最便宜10美元/月且用量充足。文章建议结合使用三款工具:先用Kiro生成文档,再导入Cursor进行项目开发,最后用Trae优化函数代码。作者强调工具无绝对优劣,关键在于合理使用。
2025-07-30 08:57:19
102
原创 大模型——AI Agent 智能体深度解析:技术脉络、架构核心与未来图景
AI Agent智能体技术正迎来爆发期,其发展经历了从规则系统、机器学习到深度学习和强化学习的演进,如今在大语言模型驱动下进入自主智能新阶段。AI Agent由感知层、控制层和行动层三大模块构成,依托大语言模型、多模态融合、强化学习及知识库等核心技术实现自主决策与执行。当前已广泛应用于智能助手、智能制造、个性化教育、金融风控等领域。未来,AI Agent将向更智能、个性化和多模态方向发展,深入渗透更多行业,重塑人机协作模式。Manus和OpenAI Operator等实践案例为AI Agent的落地提供了差
2025-07-26 12:17:43
41
原创 大模型——字节Coze重磅开源!Dify何去何从
字节跳动开源AI Agent开发平台Coze Studio,提供Prompt、RAG等核心技术支持,支持零代码/低代码开发。采用Golang+React技术栈,基于微服务架构,Apache 2.0协议允许商用和修改。相比Dify在商标和多租户方面的限制,Coze的开源策略更友好。该平台与Dify形成竞争关系,或将重塑AI开发工具市场格局。(149字)
2025-07-26 12:17:10
278
原创 大模型系列——Dify:知识库与外部知识库
摘要 Dify知识库系统通过整合静态预训练数据和动态外部信息,提升大模型回答的准确性和时效性。系统支持创建知识库并上传多种格式文档,提供高质量和经济两种索引模式,其中高质量模式支持向量检索、全文检索和混合检索。知识库管理包括元数据分类(内置和自定义)、文档分段和检索设置,同时支持连接外部知识库以扩展信息来源。系统还提供API接口,允许开发者自定义检索参数和元数据筛选条件,实现更灵活的信息检索机制。
2025-07-26 11:08:48
41
原创 大模型——基于 RAG 和 Claude 的智能文档聊天系统实战指南
普通LLM适合头脑风暴,但在律所的生产环境中,合规性差、成本高。我们需要带硬性隐私保证、确定性引用逻辑和低延迟的RAG系统,所以有了下面的架构。
2025-07-24 21:25:51
286
原创 大模型——Qwen3-Embedding最新嵌入模型使用指南
Qwen3-Embedding是2025年6月发布的最新文本嵌入模型系列,基于Qwen3基础模型开发,提供0.6B到8B多种参数规模选择。该系列支持100+种语言,具有32K长文本处理能力,嵌入维度可自定义(32-4096)。8B版本在MTEB多语言榜单排名第一(70.58分),支持检索、分类、聚类等多种任务。模型可通过Ollama或HuggingFace安装,使用SentenceTransformers或Transformers库进行调用,支持自定义指令优化特定任务表现。嵌入模型与重排序模型可组合使用,兼
2025-07-24 21:23:16
198
原创 大模型——AI编程真是卷疯了,阿里掏出了他们最强的AI编程模型 Qwen3-Coder
阿里开源最强AI编程模型Qwen3-Coder,在编程能力上展现出色表现。该模型基于7.5T训练数据(70%为代码数据),支持256K上下文并可通过YaRN扩展至1M。测试显示其能快速生成完整的网站项目,如Dribbble风格作品集、黑客风内容平台等,一次通过率高。模型还支持命令行工具Qwen Code CLI,提供更高效的编程体验。开发者可通过阿里云百炼平台获取100万免费token试用,建议选择1M上下文版本以获得更佳编程体验。
2025-07-23 21:19:02
192
原创 大模型——基于Dify 知识库的实验 从0到1构建智能商品分类系统
本文记录了从零开始构建智能商品分类系统的实验过程。最初尝试直接使用大模型进行分类,因数据量过大而失败;改用多级分类方法又面临效率低、成本高的问题。最终采用"检索+生成"方案:先通过向量检索筛选候选分类,再用大模型精准匹配,显著提升了效果。系统还实现了知识库动态更新机制,保持分类时效性。实验推荐使用BAAI/bge系列模型组合,验证了AI应用中工具组合的重要性。作者总结了从失败到成功的关键经验,为类似AI应用开发提供了实践参考。
2025-07-23 21:09:49
260
原创 大模型——上下文工程如何重塑智能体的“思考方式”
例如在文章开头,我们举的产品经理和工程师之间的那一段对话,一个高质量智能体,不再只是让大模型回答用户的问题,而是通过上下文工程,帮助大模型在回答前获得更加结构化的输入,包括项目状态、需求文档、任务历史、甚至团队氛围,实现大模型更好的理解当前的任务规划、团队过往的沟通隐患、对方的工作状态与担忧、文档/知识库的实时状态等等。这和我们维护我们手机上内存很像,一开始所有应用和历史信息都保留,但当手机出现运行缓慢的时候,就会开始清理手机内存,例如把下载到本地的大文件删除,删除微信聊天中的不重要的历史信息。
2025-07-22 20:19:54
130
原创 大模型——Data Agent:超越 BI 与 AI 的边界
摘要 数据分析工具正经历从Excel到BI再到AI的演进,但仍面临核心挑战:传统工具被动响应,无法主动解决业务问题。Data Agent代表新一代解决方案,通过大模型技术实现从"工具"到"智能体"的转变,具备主动思考、问题引导和行动建议能力。它能自主识别异常、分析原因并提出解决方案,推动从数据理解到业务洞察的跃迁。火山引擎等企业已开始实践Data Agent架构,正在实现从被动查询到主动智能的突破,为数据分析领域带来质的飞跃。
2025-07-22 20:17:13
128
原创 大模型——上下文工程 (Context Engineering) – 现代 AI 系统的架构基础
上下文工程:现代AI系统的新架构基础 随着AI从简单问答转向复杂智能体系统,上下文工程(Context Engineering)正取代提示工程,成为构建可靠AI应用的核心范式。上下文工程是一门设计动态系统的学科,旨在为大型语言模型(LLM)精准提供任务所需的全部信息和工具。 与静态的提示工程不同,上下文工程强调构建动态系统,通过管理LLM有限的"工作记忆"(类比计算机RAM),从用户历史、工具调用和数据库等多源动态组装上下文。现代AI智能体的失败往往源于上下文而非模型能力,凸显这一技术的
2025-07-21 21:20:49
191
原创 大模型——Prompt 优化还是模型微调
摘要: 大语言模型应用中,Prompt优化和模型微调是提升性能的两种主要方式。Prompt优化通过巧妙设计指令引导模型输出,具有灵活性高、成本低的优势,适合通用任务和快速迭代;模型微调则通过特定数据训练使模型成为领域专家,适用于专业性强、稳定性要求高的场景。两者各有优劣:Prompt优化依赖预训练知识且易受表述影响,而微调虽效果稳定但资源消耗大。实际应用中可根据需求采用混合策略,结合两者优势,实现最优效果。
2025-07-21 21:18:59
1046
原创 大模型——使用本地大模型提取发票信息
Ollama是一款开源应用程序,可让您使用 MacOS、Linux 和 Windows 上的命令行界面在本地运行、创建和共享大型语言模型。Ollama 可以直接从其库中访问各种 LLM,只需一个命令即可下载。下载后,只需执行一个命令即可开始使用。这对于工作量围绕终端窗口的用户非常有帮助。如果他们被困在某个地方,他们可以在不切换到另一个浏览器窗口的情况下获得答案。
2025-07-18 07:49:49
286
原创 大模型——神级的编程工具 Kiro 来了,吊打cursor
Kiro:下一代AI驱动的智能开发工具 Kiro是一款革命性的AI编程助手,采用Spec-Driven Development(需求驱动开发)理念,帮助开发者从灵感到部署实现全流程管理。其核心功能包括: Specs智能需求分析:自动将模糊需求拆解为详细用户故事,补充边界条件,生成开发指导手册 Hooks自动化工作流:在代码提交、API修改等场景自动执行测试更新、文档同步、安全检查等操作 三步开发流程:从需求生成→系统设计→任务执行,保持规格与代码同步,解决文档过时问题 Kiro目前处于限免预览阶段,支持多平
2025-07-18 07:47:59
262
原创 大模型——Gemini CLI一比一复刻Claude Code
这次复刻也不讲什么武德了,从界面到功能,完完全全的照搬Claude Code,从仓库的提交历史上来看,复刻的过程其实已经持续了近一个月,40个贡献者有近1000次的疯狂commit提交。后来就越用越上头,越写越来劲了,临到睡前,又用 GC写了一个GC自己的说明书,实时同步官方文档,自动翻译。首先是超大上下文,近100万 Token 窗口,中大型项目的代码库一口气吞完,这就是GC对比CC的一记绝杀,分析架构还是大规模重构轻松应对。哈哈哈,看起来 AI 写的代码,也需要人类来 Review 和修复啊。
2025-07-17 07:23:33
173
原创 大模型——RAG 的性能评估
RAG系统评估需关注检索与生成两大环节的关键指标。检索质量包括上下文相关性(判断信息与问题匹配度)、召回率(确保关键信息不遗漏)和精度(衡量有用信息占比)。生成质量则评估答案忠实性(是否基于检索内容)和相关性(是否准确回应问题)。这些无参考指标能有效评估系统性能,避免因未经全面测试导致的信息不准确或误导性输出问题,对高要求应用场景尤为重要。
2025-07-17 07:22:30
35
原创 大模型——AI + 向量检索,做一个懂你的推荐服务
AI+向量检索构建智能图标推荐系统 本文介绍了一种结合大语言模型(LLM)和多模态向量检索技术的智能图标推荐方案。系统通过LLM深度解析用户文本,提取可视化关键词并翻译为英文;利用CLIP模型将文本和图标编码到同一语义向量空间;采用HNSW算法实现毫秒级向量检索;支持混合查询(语义匹配+条件过滤)。实践表明,该系统能有效解决传统关键词检索在图文匹配中的语义鸿沟问题,实现从抽象概念到具象图标的精准推荐。评估采用人工+AI结合的评测体系,验证了推荐效果在实际业务场景中的优越性。
2025-07-16 13:15:13
178
原创 大模型——AI对话四象限
{ "摘要": "文章揭示了90%的人不会有效与AI沟通的问题,指出简单粗暴的提问只能得到标准答案。作者提出'AI对话四象限'模型:1)双方都懂时提效;2)AI懂但需学会分层提问;3)共同探索未知领域;4)向AI传授独家知识。强调沟通技巧的重要性,认为会提问的人不会被AI替代。最后呼吁读者尝试四象限思维,与AI碰撞火花。" }
2025-07-16 13:14:01
49
原创 大模型——AI大模型落地最后一公里:RAG
本文探讨了AI大模型落地应用中的关键环节——RAG(检索增强生成)技术。文章指出,专属智能体的生产力价值主要取决于其私有知识库的质量和处理水平。通过比喻将LLM比作"超级大脑",私有知识库比作"记忆库",强调二者结合的重要性。RAG系统通过"先检索后生成"的工作机制,为模型提供外部资料库和高效检索能力,有效降低模型幻觉风险,使回答基于最新、特定和非公开数据。文章还展示了RAG系统的结构流程和基于LangChain的增强版实现方案,建议读者根据实际需
2025-07-10 09:16:03
131
原创 大模型——别让 AI 替你思考,让它陪你学习
AI 已经具备了极强的信息处理能力。特别是像 Gemini 这样的模型,不仅拥有超长的上下文窗口,其在语义理解方面也表现出一些让我惊喜的品质:清晰、锋利且具有一定深度。我曾感慨说:Gemini 是一个内容制造怪兽。它似乎永不满足,渴望人类给它投喂更多、更优质的信息。它会将这些信息全部「嚼碎」,消化掉,然后按照你期望的形式,为你制造出内容。面对庞杂的材料和巨大的信息量,人类的认知加工系统或许会陷入瘫痪,但 AI 却能游刃有余地应对。那么,作为人类,我们该如何驾驭这台高能的思考机器呢?
2025-07-10 09:13:15
254
原创 大模型——如何构建高效的 Agents
摘要: 本文探讨了基于大语言模型(LLM)的代理系统构建方法。作者区分了工作流(预定义路径)和代理(动态决策系统),建议优先选择简单方案,仅在必要时增加复杂度。核心模式包括增强型LLM、提示链、路由、并行化、编排者-执行者和评估者-优化者工作流,适用于不同场景。代理系统适合开放性问题,但需权衡成本与风险。强调工具设计的重要性,并建议避免过度依赖框架,通过直接使用API实现灵活组合。附录提供了工具开发和安全防护的实践指南。
2025-07-09 08:56:44
166
原创 大模型系列——Pollinations.AI:提供完全免费的AI内容生成
Pollinations.AI是一个开源免费的AI内容生成平台,提供文本、图像、音频等多种生成和转换API。该平台无需注册即可使用,支持Flux/Turbo等先进模型,开发者可通过URL直接调用API或使用Python SDK集成。主要功能包括文生图、文生音频、音转文等,并提供OpenAI兼容接口。平台操作简单,既适合开发者快速集成,也方便普通用户直接使用网页版生成内容。Pollinations.AI以开源方式推动AI内容创作民主化,让每个人都能轻松获取AI生成能力。
2025-07-09 08:52:56
119
原创 大模型——Dify中的MCP相关插件及FastMCP服务实现原理
摘要:本文介绍了Dify平台中的MCP相关插件实现原理,主要包括4类插件:扩展插件(将Dify应用发布为MCP服务)、工具插件(调用MCP服务)、Agent策略插件(支持FunctionCalling和ReAct策略)以及垂直领域应用插件。重点分析了6个核心插件的功能和使用方式,包括MCP服务发布、兼容性转换、客户端调用等机制,为开发者提供了Dify平台与MCP协议集成的技术参考。
2025-07-08 21:01:44
237
原创 大模型——基于业务知识和代码库增强的大模型生成代码实践
《基于业务知识与代码库的大模型智能开发实践》 摘要:本文记录了一位互联网公司研发新人李明通过结合大模型技术与业务知识库,解决开发过程中文档缺失、知识孤岛等痛点的实践。文章分三个阶段介绍了该方案的演进:STAGE-1基础提示词应用;STAGE-2构建知识关联系统,通过整合需求文档、代码变更记录和常见问题库,实现业务知识快速检索;STAGE-3深度集成代码与需求,利用GitHub API等技术自动关联代码与需求文档,形成可查询的知识图谱。实践表明,该方法有效降低了新人学习成本,提高了开发效率,为技术团队的知识沉
2025-07-08 20:58:03
54
原创 大模型——Pollinations.AI:提供完全免费的AI内容生成
Pollinations.AI是一个开源免费的AI内容生成平台,提供文本、图像、音频等生成和转换API。该平台无需注册即可使用,支持Flux/Turbo等模型,开发者可通过简单URL调用API或使用Python SDK。特色包括OpenAI兼容接口、实时生成动态和浏览器开发环境,适合快速构建AI应用。用户可通过Web端或API实现图像生成、文本转语音等功能,代码示例展示了如何调用各接口。作为瑞士团队开发的开源项目,Pollinations.AI为内容创作提供了"AI核动力"解决方案。
2025-07-06 23:13:36
153
原创 大模型——Prompt:让你的工作价值被看见,述职时从6分表达到10分价值的完整指南
摘要:职场中,许多人做了10分的工作却只能表达出6分的价值。本文提供了一套完整的工作价值提炼系统,通过7个步骤(多维价值解析、价值重构与放大、价值量化与对比、战略关联与提升、表达优化与对比、情境适配与叙事技巧、价值提炼模板)帮助用户将工作成果转化为高影响力的价值陈述。系统包含具体示例、量化方法、战略关联技巧和不同场景下的表达建议,旨在让真实的工作价值被充分看见和认可,而非过度包装。
2025-07-04 09:34:24
228
原创 大模型——Dify对接NextChat中的具体操作和原理
摘要: 本文介绍了如何通过OpenAI Compatible Dify App插件将Dify应用API转换为OpenAI兼容模式,并集成到NextChat中。具体步骤包括:1)配置Dify的Chatflow示例并安装插件;2)修改NextChat源码的配置文件,解决CORS问题;3)实现流式与阻塞两种响应模式的核心原理,通过_invoke()方法处理认证、参数验证及消息记忆模式(支持最后一条或全部消息)。该方案使NextChat能兼容Dify接口,支持Markdown等丰富渲染功能。
2025-07-04 09:31:29
155
原创 大模型——基于 Ollama 多模态引擎的 Qwen 2.5 VL 模型部署及其应用
Ollama多模态引擎赋能Qwen 2.5 VL模型本地部署 Ollama推出的全新多模态引擎解决了原有架构在多模态模型支持上的局限,为Qwen 2.5 VL等模型提供了更可靠的运行环境。该引擎采用模块化设计,确保每个模型独立运行,忠实还原训练时的处理逻辑,同时优化了图像处理精度和内存管理。 Qwen 2.5 VL作为通义千问的旗舰视觉语言模型,具备图像文本识别、视频理解、视觉定位等能力。通过Ollama引擎本地部署后测试显示,该模型能准确描述图片内容,识别动物特征,但在某些细节(如动物数量)和特定食物识别
2025-07-02 11:13:08
139
原创 大模型——输入水果名生成10w+AI切水果爆款视频!新号0粉小红书连爆2条
AI切水果视频爆火!教你用Coze工作流一键生成10w+爆款视频 近期AI切水果视频在各大平台爆红,单条视频轻松获赞几十万。本文提供两种生成方案:1)使用Gemini或即梦工具手动输入提示词生成;2)通过Coze工作流自动生成,只需输入水果名称即可输出提示词和视频。工作流包含颜色搭配、提示词生成、视频制作等节点,支持多种水果同时处理。新账号测试显示,该方案效果显著,半小时即获可观流量。文末提供完整工作流搭建教程,适合零基础用户快速上手。
2025-07-02 11:01:21
298
原创 大模型—— 一文带你快速入门 Llama Factory
此外,Llama Factory 还包含了模型优化的工具,如模型压缩和量化,通过这些优化手段,可以提高模型的推理效率,减少模型在运行时对资源的消耗,使其能够在更广泛的设备上高效运行。例如,在企业智能客服场景中,将企业的产品手册、常见问题解答等知识库与模型结合,当用户提出问题时,模型不仅可以利用自身学习到的语言知识和通用知识进行回答,还可以从外部知识库中获取更准确、详细的信息,从而给出更加全面、准确的回答,增强了模型回答的准确性和可靠性,为用户提供更好的服务体验。
2025-06-30 22:09:35
61
原创 大模型——怎么让 AI 写出好看有设计感的网页
本文介绍如何利用AI生成更具设计感的网页。通过分析常见AI生成网页的模板化问题(如引用边框等特征),作者推荐使用21st.dev网站的优质模板,并提供了优化提示词的方法。具体步骤包括:1)复制模板代码文件;2)发送特定提示词让AI学习模板的视觉风格、布局和动画;3)自动安装依赖。该方法能保留核心功能的同时提升网页视觉效果,避免直接复制模板导致的问题。文中还展示了优化前后的网页对比效果。
2025-06-30 22:07:55
191
原创 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
TRAE智能编程工具与Milvus向量数据库通过MCP协议实现深度集成,为开发者带来自然语言操作数据库的全新体验。MCP协议支持两种通信模式:Stdio适用于单客户端场景,而SSE模式则基于HTTP协议实现实时数据推送,完美适配现代IDE需求。文章详细介绍了环境配置、Milvus安装、MCP服务器部署以及TRAE智能体创建的完整流程,展示了如何通过自然语言指令创建和查询向量数据库集合。这种集成标志着AI开发工具正从单纯代码生成向具备企业级知识理解能力的智能开发伙伴演进,为开发者构建了从"辅助编码&
2025-06-27 08:06:38
103
原创 大模型——Dify:知识库与外部知识库
摘要 Dify的知识库功能为开发者提供了动态知识管理解决方案,超越了大模型静态预训练数据的限制。知识库支持多种文档格式(如txt、pdf、docx等),通过文档分段、索引设置和检索优化机制提升LLM的响应准确性。系统提供高质量和经济两种索引模式,前者采用向量化检索技术,后者使用关键词匹配以降低成本。知识库支持元数据管理,包括自动生成的内置元数据和用户自定义元数据,便于内容分类和检索。对于高级需求,Dify还支持连接外部知识库,通过API实现跨平台数据共享和检索优化,满足企业级知识管理需求。
2025-06-27 08:03:59
237
原创 大模型—— Gemini CLI一比一复刻Claude Code
这次复刻也不讲什么武德了,从界面到功能,完完全全的照搬Claude Code,从仓库的提交历史上来看,复刻的过程其实已经持续了近一个月,40个贡献者有近1000次的疯狂commit提交。后来就越用越上头,越写越来劲了,临到睡前,又用 GC写了一个GC自己的说明书,实时同步官方文档,自动翻译。首先是超大上下文,近100万 Token 窗口,中大型项目的代码库一口气吞完,这就是GC对比CC的一记绝杀,分析架构还是大规模重构轻松应对。哈哈哈,看起来 AI 写的代码,也需要人类来 Review 和修复啊。
2025-06-26 08:10:07
751
原创 大模型—— 从0到1落地一个RAG智能客服系统
摘要: 本文分享了从0到1落地RAG智能客服系统的实践经验。项目基于大模型API成本下降的背景,选择阿里云百炼+自主代码调度方案,兼顾中文理解、成本控制和复杂逻辑扩展性。数据预处理阶段,将说明书结构化,并用大模型批量清洗客服聊天记录生成QA对。Prompt设计强调分步骤验证、示例引导和格式约束,而多智能体协作架构(型号识别、意图分类、状态机等)提升了复杂场景处理能力。测试发现回复稳定性、上下文连贯性仍需优化,下一步将逐步上线试运行。关键挑战包括同义问题归并、模糊问法处理和非文本交互支持,需结合业务持续迭代。
2025-06-26 08:02:59
183
原创 大模型——Cursor-Agent 实战:构建端到端自动化取数工具的实践
Cursor-Agent 实战:自动化取数工具的探索与演进 本文分享了基于 Cursor-Agent 构建端到端自动化取数工具的实践经验。针对传统取数工作中存在的效率瓶颈(复杂需求耗时4-6小时),团队通过融合AI Agent技术,实现了从需求输入到结果输出的全流程自动化。核心创新包括: 端到端工作流:需求分析→业务知识查找→数据库探索→SQL编写执行→结果处理 关键组件设计: .cursorrules 规则引擎作为"大脑" Local Tools 作为执行"手脚"
2025-06-26 07:57:13
120
想看看你们在csdn 上赚了多少钱
2025-07-07
关于枚举你都知道什么呢?
2020-12-15
有没有一个讲Java 集合的系列文章
2020-12-13
有没有一个将Java 结合的系列文章
2020-12-13
TA创建的收藏夹 TA关注的收藏夹
TA关注的人