雪花算法(SnowFlake)Java实现

本文介绍了SnowFlake算法的基本原理,该算法能够生成64位无重复且按时间趋势递增的ID。在Java中,由于64位整数对应long类型,所以使用long存储生成的ID。SnowFlake算法通过datacenterId和machineId确保在分布式系统中避免ID冲突。文章还提及了Twitter官方的Scala实现,并提供了测试类的相关内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

算法原理

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

 

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

SnowFlake可以保证:

  1. 所有生成的id按时间趋势递增
  2. 整个分布式系统内不会产生重复id(因为有datacenterId和machineId来做区分)

算法实现(Java)

Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看。

/**
 *  * SnowFlake的结构如下(每部分用-分开):<br>
 *  * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 -
 * 000000000000 <br>
 *  * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
 *  * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)  *
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T
 * = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 *  * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
 *  * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
 *  * 加起来刚好64位,为一个Long型。<br>
 *  *
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生20多万ID左右。
 *  @author 80000636
 */
public class SnowflakeIdWorker {
	private static final Logger logger = LoggerFactory.getLogger(SnowflakeIdWorker.class);
	/**
     * 起始的时间戳
     */
    private final static long START_STMP = 1480166465631L;

    /**
     * 每一部分占用的位数
     */
    private final static long SEQUENCE_BIT = 10; //序列号占用的位数
    private final static long MACHINE_BIT = 5;   //机器标识占用的位数
    private final static long DATACENTER_BIT = 5;//数据中心占用的位数

    /**
     * 每一部分的最大值
     */
    public final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
    public final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

    private long datacenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastStmp = -1L;//上一次时间戳
    /**
     * 根据MAC生成datacenterId,根据MAC + PID生成machineId
     */
    public SnowflakeIdWorker() {
    	long datacenterId = getDatacenterId(MAX_DATACENTER_NUM);
    	long machineId = getMachineId(datacenterId, MAX_MACHINE_NUM);
        check(datacenterId, machineId);
        this.datacenterId = datacenterId;
        this.machineId = machineId;
    }
    /**
     * datacenterId和machineId可配置
     * @param datacenterId
     * @param machineId
     */
    public SnowflakeIdWorker(long datacenterId, long machineId) {
        check(datacenterId, machineId);
        this.datacenterId = datacenterId;
        this.machineId = machineId;
    }

	private static void check(long datacenterId, long machineId) {
		if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
            throw new EompRuntimeException(String.format("datacenterId can't be greater than %s or less than 0", MAX_DATACENTER_NUM));
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new EompRuntimeException(String.format("machineId can't be greater than %s or less than 0", MAX_MACHINE_NUM));
        }
	}

    /**
     * 产生下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long currStmp = getNewstmp();
        if (currStmp < lastStmp) {
            throw new EompRuntimeException("Clock moved backwards.  Refusing to generate id");
        }

        if (currStmp == lastStmp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStmp = getNextMill();
            }
        } else {
            //不同毫秒内,序列号置为0
            sequence = 0L;
        }

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
                | datacenterId << DATACENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @return 当前时间戳
     */
    private long getNextMill() {
        long mill = getNewstmp();
        while (mill <= lastStmp) {
            mill = getNewstmp();
        }
        return mill;
    }
    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    private long getNewstmp() {
        return System.currentTimeMillis();
    }
    /**
     * 机器标识
     */
    private static long getMachineId(long datacenterId, long maxWorkerId) {
        StringBuilder mpid = new StringBuilder();
        mpid.append(datacenterId);
        String name = ManagementFactory.getRuntimeMXBean().getName();
        if (!name.isEmpty()) {
            /** GET jvmPid */
            mpid.append(name.split("@")[0]);
        }
        /** MAC + PID 的 hashcode 获取16个低位 */
        return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
    }
 
    /**
     * 数据标识id部分
     */
    private static long getDatacenterId(long maxDatacenterId) {
        long id = 0L;
        try {
            InetAddress ip = InetAddress.getLocalHost();
            NetworkInterface network = NetworkInterface.getByInetAddress(ip);
            if (network == null) {
                id = 1L;
            } else {
                byte[] mac = network.getHardwareAddress();
                id = ((0x000000FF & (long) mac[mac.length - 1])
                        | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
                id = id % (maxDatacenterId + 1);
            }
        } catch (Exception e) {
        	logger.error("getDatacenterId exception.", e);
        }
        return id;
    }

    /*public static void main(String[] args) {
    	long datacenterId = getDatacenterId(MAX_DATACENTER_NUM);
        long machineId = getMachineId(datacenterId, MAX_MACHINE_NUM);
        System.out.println("ip:" + datacenterId + ",processId:" + machineId);
    }*/
}

测试类:

public class SnowflakeIdWorkerTest {
	
	public static Set<Long> idSet = new HashSet<>();

    public static void main(String[] args) {
    	SnowflakeIdWorker snowflakeIdWorker = new SnowflakeIdWorker(1, 0);
        for (long i = 0; i < 1000; i++) {
            new Thread(new Worker(snowflakeIdWorker)).start();
        }
    }

    static class Worker implements Runnable {

        private SnowflakeIdWorker snowflakeIdWorker;

        public Worker(SnowflakeIdWorker snowflakeIdWorker) {
            this.snowflakeIdWorker = snowflakeIdWorker;
        }

        @Override
        public void run() {
            for (int i = 0; i < 1000; i++) {
            	Long id = snowflakeIdWorker.nextId();
                if (!idSet.add(id)) {
                    System.err.println("存在重复id:" + id);
                }
            }
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值