Andrew Ng机器学习笔记week9 异常检测、推荐系统

本文主要介绍了两种重要的机器学习应用——异常检测与推荐系统。在异常检测部分,讲解了如何利用高斯分布进行密度估计,并给出了算法的具体步骤及评估方法。在推荐系统部分,则涵盖了基于内容的推荐和协同过滤两种主流方法,包括其优化目标和具体算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、异常检测

1.问题举例:
这里写图片描述

2.高斯分布
这里写图片描述
3.算法
密度估计
这里写图片描述
算法过程、举例:
这里写图片描述
算法评估:
这里写图片描述
4.异常检测 VS 监督学习
这里写图片描述
5.选择使用的特征
这里写图片描述

6.多变量高斯分布
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
使用多变量高斯分布的异常检测
这里写图片描述
这里写图片描述

二、推荐系统

问题:
这里写图片描述

1.基于内容的推荐
这里写图片描述
这里写图片描述
优化目标:
这里写图片描述
优化算法:
这里写图片描述

2.Collaborative filtering
这里写图片描述

优化算法:
这里写图片描述

协同过滤:
这里写图片描述
①协同过滤的优化目标:
这里写图片描述
②协同过滤算法:
这里写图片描述

3.向量化:低秩矩阵分解
这里写图片描述

4.实现细节:均值归一化处理
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值