
深度学习入门到精通
文章平均质量分 96
深入浅出探索深度学习的核心原理与实践应用!从神经网络基础到前沿模型架构,结合代码实战与案例分析,带你掌握AI时代的核心技术。无论你是初学者还是进阶开发者,这里都有适合你的系统学习路径。
吴师兄大模型
计算机硕士。
研究方向:知识图谱、自然语言处理(NLP)与大模型技术。
擅长理论剖析与实战应用,致力于分享高质量人工智能学习资源。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【深度学习-Day 41】解密循环神经网络(RNN):深入理解隐藏状态、参数共享与前向传播
本文将深入剖析最基础的RNN结构,带你彻底理解其核心工作原理。我们将从RNN的核心单元(Cell)出发,详细解读其内部结构、关键的隐藏状态(Hidden State)传递机制,以及高效的参数共享(Parameter Sharing)策略。最后,我们将通过可视化的方式完整地演示RNN的前向传播过程,并提供一个NumPy实现的代码示例,让你真正掌握RNN的内在逻辑,为后续学习LSTM、GRU等高级变体打下坚实的基础。原创 2025-08-05 19:00:00 · 2699 阅读 · 0 评论 -
【深度学习-Day 40】RNN入门:当神经网络拥有记忆,如何处理文本与时间序列?
本文将正式开启循环神经网络(RNN)的学习之旅,深入探讨为什么处理序列数据需要一种全新的架构。我们将从序列数据的本质特性出发,剖析 MLP 和 CNN 在处理这类数据时的核心局限性,并最终揭示 RNN 如何通过其独特的**循环结构**和**隐藏状态**机制,赋予神经网络“记忆”能力,从而有效地理解和处理序列信息。原创 2025-07-29 19:00:00 · 1410 阅读 · 0 评论 -
【深度学习-Day 39】玩转迁移学习与模型微调:站在巨人的肩膀上
我们将从迁移学习的核心思想出发,系统性地解析其工作原理、关键策略(如特征提取、分层微调),并详细介绍如何根据不同场景选择最合适的微调方案。最后,本文将通过一个完整的 PyTorch 实战案例,手把手教你如何加载预训练的 ResNet 模型,并将其成功微调应用于新的图像分类任务。无论你是希望快速实现项目落地的初学者,还是寻求提升模型性能的进阶者,本文都将为你提供清晰的理论指导和可复现的实践代码。原创 2025-07-22 09:00:00 · 1462 阅读 · 0 评论 -
【深度学习-Day 38】破解深度网络退化之谜:残差网络(ResNet)核心原理与实战
ResNet的核心在于引入了“残差学习”框架和“快捷连接”(Shortcut Connection),它巧妙地改变了网络的学习目标,使得优化深层网络变得异常容易。本文将深入剖析网络退化问题的本质,详细阐述ResNet的设计哲学、核心组件“残差块”的工作原理,并提供基于PyTorch的实现代码。通过理解ResNet,你将掌握构建超深神经网络的关键,并洞悉其为何能成为计算机视觉乃至整个深度学习领域的里程碑式工作。原创 2025-07-19 19:00:00 · 2465 阅读 · 0 评论 -
【深度学习-Day 37】VGG与GoogLeNet:当深度遇见宽度,CNN架构的演进之路
本文将深入探讨两种具有里程碑意义的经典卷积神经网络(CNN)架构:VGG和GoogLeNet。VGG以其极致的简洁和深度,证明了通过堆叠小型卷积核构建深层网络的可行性。而GoogLeNet则另辟蹊径,通过创新的Inception模块,在网络“宽度”上做文章,实现了在更低计算预算下对多尺度特征的高效提取。原创 2025-07-15 09:00:00 · 2368 阅读 · 0 评论 -
【深度学习-Day 36】CNN的开山鼻祖:从LeNet-5到AlexNet的架构演进之路
卷积神经网络(CNN)是深度学习在计算机视觉领域取得巨大成功的核心。然而,任何参天大树都源于最初的种子。在如今动辄上百层的复杂网络结构背后,是那些具有开创性意义的经典模型奠定了基石。本文将带领读者穿越时空,回到CNN发展的早期,深入剖析两个里程碑式的网络架构:**LeNet-5** 和 **AlexNet**。原创 2025-07-08 19:00:00 · 1878 阅读 · 0 评论 -
【深度学习-Day 35】实战图像数据增强:用PyTorch和TensorFlow扩充你的数据集
本文将带你深入探索图像数据增强的世界,我们将详细解析: * 为什么数据增强是训练高性能模型的关键? * 有哪些常用且有效的图像增强技术? * 如何在 PyTorch 和 TensorFlow 两大主流框架中轻松实现数据增强? * 应用数据增强时需要注意哪些最佳实践和“坑点”?原创 2025-07-05 07:00:00 · 4007 阅读 · 0 评论 -
【深度学习-Day 34】CNN实战:从零构建CIFAR-10图像分类器(PyTorch)
本文的目标就是将理论转化为代码,带领大家完成一个完整的、端到端的深度学习项目:**使用 PyTorch 框架构建一个 CNN 模型,对经典的 CIFAR-10 数据集进行图像分类**。CIFAR-10 是一个比 MNIST 更具挑战性的彩色图像数据集,是检验模型性能的绝佳“试金石”。原创 2025-07-02 20:11:06 · 1183 阅读 · 0 评论 -
【深度学习-Day 33】从零到一:亲手构建你的第一个卷积神经网络(CNN)
我们知道了卷积层如何通过卷积核提取局部特征,以及池化层如何进行降维和增强特征的不变性。今天,我们将把这些独立的“积木块”组装起来,亲手搭建我们的第一个完整的卷积神经网络模型。本文将带你领略一个典型CNN的完整结构,理解其工作流程,并最终使用PyTorch代码将其变为现实。原创 2025-06-29 19:00:00 · 872 阅读 · 0 评论 -
【深度学习-Day 32】CNN核心组件之池化层:解密最大池化与平均池化
为了解决这些问题,CNN架构中引入了另一个关键组件——**池化层(Pooling Layer)**。本篇文章将带你深入理解池化层的作用、工作原理、主要类型以及如何在代码中实现它。它就像是卷积层的得力助手,通过“降维”和“增强”两大神技,让CNN模型变得更高效、更鲁棒。原创 2025-06-25 19:00:00 · 824 阅读 · 0 评论 -
【深度学习-Day 31】CNN基石:彻底搞懂卷积层 (Convolutional Layer) 的工作原理
在上一篇文章 **【深度学习-Day 30】** 中,我们探讨了为何需要卷积神经网络(CNN)来处理图像数据,并指出了传统多层感知机(MLP)在处理图像时面临的参数爆炸和忽略空间结构等问题。我们得出结论,CNN通过其核心思想——**局部连接**和**权值共享**——完美地解决了这些难题。今天,我们将深入CNN的心脏,详细剖析其最核心、最基础的构建单元:**卷积层 (Convolutional Layer)**。理解了卷积层,就等于掌握了解锁现代计算机视觉大门的钥匙。原创 2025-06-21 19:00:00 · 5368 阅读 · 0 评论 -
【深度学习-Day 30】从MLP的瓶颈到CNN的诞生:卷积神经网络的核心思想解析
CNN是深度学习在计算机视觉领域取得巨大成功的基石,它彻底改变了我们处理图像数据的方式。本文作为CNN系列的开篇,将聚焦于一个根本性问题:我们为什么需要卷积?通过剖析传统MLP在处理图像时的天然缺陷,我们将引出CNN两大革命性思想——局部连接与权值共享,带你从根源上理解CNN设计的精妙之处。原创 2025-06-19 19:00:00 · 1199 阅读 · 0 评论 -
【深度学习-Day 29】PyTorch模型持久化指南:从保存到部署的第一步
模型训练的最终目的,是为了将其应用于实际场景,或者在未来继续优化。这就引出了深度学习流程中至关重要的一环——**模型保存与加载**。本篇文章将带你深入理解为什么需要保存模型,探索不同的保存策略,并手把手教你如何使用 PyTorch 实现模型的持久化、加载和复用。掌握这项技能,意味着你的模型不再是一次性的“消耗品”,而是可以随时待命、持续进化的宝贵资产。原创 2025-06-18 19:00:00 · 1133 阅读 · 0 评论 -
【深度学习-Day 28】告别玄学调参:一文搞懂网格搜索、随机搜索与自动化超参数优化
本篇文章将系统性地为你揭开超参数调优的神秘面纱,从最基础的概念讲起,深入剖析经典的\*\*网格搜索(Grid Search)**和**随机搜索(Random Search)\*\*方法,并介绍更高效的自动化调优工具。我们的目标是,让你告别“玄学调参”,掌握一套科学、高效的调优方法论,将模型性能推向新的高度。原创 2025-06-13 19:00:00 · 1499 阅读 · 0 评论 -
【深度学习-Day 27】模型调优利器:掌握早停、数据增强与批量归一化
今天,我们将聚焦于另外三个在实践中几乎无处不在的关键技术: * **早停法 (Early Stopping)**:一种简单却极其有效的“刹车”机制,防止模型在过拟合的道路上越走越远。 * **数据增强 (Data Augmentation)**:当数据有限时,它能像“炼金术”一样创造出更多样的训练样本,是提升模型泛化能力的免费午餐。 * **批量归一化 (Batch Normalization)**:它不仅能加速模型收敛,还能起到正则化的作用,是现代深度网络架构中的标配组件。原创 2025-06-12 19:00:00 · 872 阅读 · 0 评论 -
【深度学习-Day 26】正则化神器 Dropout:随机失活,模型泛化的“保险丝”
今天,我们将学习一种思想上截然不同,但效果惊人且被广泛应用的正则化技术——**Dropout(随机失活)**。如果说权重衰减是给模型的参数戴上“紧箍咒”,那么 Dropout 则更像是在训练过程中给神经网络引入一种“极限生存挑战”,迫使其变得更加强大和鲁棒。本文将从 Dropout 的核心思想出发,深入剖析其工作原理、框架实现,并探讨其为何如此有效,助你彻底掌握这个防止过拟合的神器。原创 2025-06-10 19:00:00 · 1054 阅读 · 0 评论 -
【深度学习-Day 25】告别过拟合:深入解析 L1 与 L2 正则化(权重衰减)的原理与实战
从今天开始,我们将进入一个全新的单元,系统学习一系列对抗过拟合的强大技术,统称为**正则化(Regularization)**。本文作为该系列的第一篇,将聚焦于最经典、最基础的正则化方法:**权重衰减(Weight Decay)**,具体包括 L1 正则化和 L2 正则化。学完本文,你将深刻理解:* 为什么约束模型权重可以防止过拟合?* L1 和 L2 正则化的数学原理是什么?它们有何不同?* “权重衰减”这个名字从何而来?* 如何在 PyTorch 和 TensorFlow 框架中轻松应用它们?原创 2025-06-08 19:00:00 · 1186 阅读 · 0 评论 -
【深度学习-Day 24】过拟合与欠拟合:深入解析模型泛化能力的核心挑战
我们看到模型在训练数据上表现优异,但这是否意味着它就是一个好模型呢?并非如此。一个模型真正的价值在于它对**未知数据**的预测能力,我们称之为**泛化能力**。然而,在追求高泛化能力的道路上,我们常常会遇到两个主要的“拦路虎”:**欠拟合(Underfitting)** 和 **过拟合(Overfitting)**。理解并有效处理这两个问题,是从入门迈向专业的关键一步。本文将带你深入剖析这两个概念,并探讨其背后的核心理论——偏差与方差的权衡,最后提供诊断和应对的实战策略。原创 2025-06-07 19:00:00 · 1450 阅读 · 0 评论 -
【深度学习-Day 23】框架实战:模型训练与评估核心环节详解 (MNIST实战)
本篇文章将聚焦于使用深度学习框架(以 PyTorch 为例,但核心思想同样适用于 TensorFlow/Keras 等)进行模型训练和评估的完整流程。我们将深入探讨训练循环的每一个关键步骤,理解评估模式的重要性,并学习如何计算和解读常用的评估指标。最终,我们将通过一个经典的 MNIST 手写数字识别实战案例,将所有理论知识付诸实践。学完本篇,您将能够独立编写并执行一个完整的模型训练与评估流程,为后续更复杂的项目打下坚实的基础。原创 2025-06-05 19:00:00 · 1335 阅读 · 0 评论 -
【深度学习-Day 22】框架入门:告别数据瓶颈 - 掌握PyTorch Dataset、DataLoader与TensorFlow tf.data实战
本篇文章将聚焦于**数据加载与处理**这一关键环节。我们将深入探讨如何在主流深度学习框架(以 PyTorch 和 TensorFlow 为例)中管理、加载和预处理数据,确保模型能够“吃饱喝足”,并以最佳状态投入训练。无论您是初学者还是有一定经验的开发者,掌握这些技能都将为您的深度学习项目打下坚实的基础。原创 2025-06-03 19:00:00 · 2199 阅读 · 0 评论 -
【深度学习-Day 21】框架入门:神经网络模型构建核心指南 (Keras & PyTorch)
构建模型是深度学习流程中的核心环节。一个设计良好的模型结构是决定项目成败的关键因素之一。本文将带你深入了解两大主流框架 TensorFlow (主要通过其高级 API Keras) 和 PyTorch 中模型构建的机制,包括模型容器(Model Containers)的选择与使用、常用神经网络层的定义,以及如何查看和理解你所搭建的模型结构。最终,我们将通过实践,亲手用框架搭建一个简单的多层感知器(MLP)模型。原创 2025-06-02 19:00:00 · 1449 阅读 · 0 评论 -
【深度学习-Day 20】PyTorch入门:核心数据结构张量(Tensor)详解与操作
从本篇文章开始,我们将选择 **PyTorch** 作为主要的学习和实践框架(当然,很多概念在 TensorFlow 中也是类似的,我们会适时提及共通性),深入探索其核心功能。一切深度学习模型的构建、训练和部署,都离不开其最基础的数据结构——**张量 (Tensor)**。理解张量及其操作,是踏入深度学习实践大门的第一步,也是至关重要的一步。本文将带你全面认识 PyTorch 中的张量,包括它的创建、属性、常用操作以及核心的自动求导机制。原创 2025-05-31 19:00:00 · 1169 阅读 · 0 评论 -
【深度学习-Day 19】入门必读:全面解析 TensorFlow 与 PyTorch 的核心差异与选择指南
深度学习领域群雄逐鹿,其中最耀眼的两大巨头无疑是 Google 的 TensorFlow 和 Meta (Facebook) 的 PyTorch。它们各自拥有庞大的用户社区和强大的生态系统,但在设计理念、使用方式和应用场景上又各有千秋。今天,我们就将深入这两大框架的内部,对比它们的异同,并探讨如何根据自身需求做出明智的选择,为我们接下来的实战篇章打下坚实的基础。原创 2025-05-29 19:00:00 · 1751 阅读 · 0 评论 -
【深度学习-Day 18】从SGD到Adam:深度学习优化器进阶指南与实战选择
我们理解了模型如何通过计算损失函数关于参数的梯度,并沿着梯度相反的方向更新参数来最小化损失。然而,基础的梯度下降法(尤其是批量梯度下降 BGD)在实践中面临诸多挑战,如训练速度慢、可能陷入局部最优等。为了更快、更稳定地训练深度神经网络,研究者们提出了一系列更先进的优化算法。本文将带您深入了解这些高级优化器,从经典的随机梯度下降(SGD)出发,逐步探索动量(Momentum)、AdaGrad、RMSprop,直至当今广受欢迎的 Adam 算法,并探讨它们各自的优缺点及适用场景。原创 2025-05-27 19:00:00 · 885 阅读 · 0 评论 -
【深度学习-Day 17】神经网络的心脏:反向传播算法全解析
在上一篇文章【深度学习-Day 16】中,我们了解了梯度下降法——这个引领我们寻找损失函数最小值的强大工具。我们知道了,只要能计算出损失函数关于模型参数(权重 $w$ 和偏置 $b$)的梯度,我们就能通过不断迭代来更新参数,让模型变得越来越好。但是,对于一个拥有成千上万甚至数百万参数的深度神经网络来说,如何高效地计算这些梯度呢?手动推导显然是不现实的。这时,神经网络的“心脏”——**反向传播算法(Backpropagation, BP)**——就登场了。原创 2025-05-25 19:00:00 · 979 阅读 · 0 评论 -
【深度学习-Day 16】梯度下降法 - 如何让模型自动变聪明?
我们知道,一个好的模型应该有尽可能低的损失值。但这引出了一个核心问题:我们如何才能找到一组模型的参数(权重和偏置),使得损失函数的值最小化呢?手动去调整成千上万甚至上亿的参数显然是不现实的。幸运的是,我们有一种强大的数学工具——**梯度下降法 (Gradient Descent)**,它能像一位聪明的向导,带领我们自动地走向损失函数的“谷底”。本文将深入浅出地为您揭开梯度下降法的神秘面纱,理解它是如何驱动神经网络学习的。原创 2025-05-23 19:54:41 · 1066 阅读 · 0 评论 -
【深度学习-Day 15】告别“盲猜”:一文读懂深度学习损失函数
在深度学习的征途上,我们精心搭建神经网络模型,期望它能出色地完成特定任务,例如精准地识别图像中的猫狗,或者流畅地翻译不同语言的文本。但是,我们如何衡量模型“学”得好不好呢?模型又是如何知道自己应该朝哪个方向“努力学习”以变得更好呢?这背后离不开一个至关重要的概念——**损失函数(Loss Function)**。损失函数就像一把标尺,量化了模型预测结果与真实目标之间的差距。这个差距就是“损失”,模型训练的目标就是不断调整参数,使得这个损失尽可能小。原创 2025-05-22 19:00:00 · 1704 阅读 · 0 评论 -
【深度学习-Day 14】从零搭建你的第一个神经网络:多层感知器(MLP)详解
在前面的文章中,我们已经了解了神经网络的基本单元——感知器(Day 12),以及赋予神经网络非线性能力的功臣——激活函数(Day 13)。然而,单个感知器由于其线性特性,在处理复杂问题时(例如经典的XOR问题)会显得力不从心。为了克服这一局限性,科学家们提出了将多个感知器以特定方式组织起来的想法,从而诞生了功能更为强大的多层感知器(Multilayer Perceptron, MLP)。原创 2025-05-20 19:00:00 · 1090 阅读 · 0 评论 -
【深度学习-Day 13】激活函数选型指南:一文搞懂Sigmoid、Tanh、ReLU、Softmax的核心原理与应用场景
在前面的学习中,我们已经了解了神经网络的基本单元——感知器,以及如何通过堆叠感知器构建更复杂的多层感知器(MLP)。然而,如果仅仅是简单地堆叠线性单元,神经网络的表达能力将非常有限,无法解决复杂的非线性问题。这时,激活函数就扮演了至关重要的角色,它为神经网络引入了非线性特性,使其能够学习和表示更加复杂的数据模式。本文将带大家全面了解常用的激活函数,深入探讨它们的原理、优缺点以及在不同场景下的选择策略。原创 2025-05-18 19:00:00 · 1982 阅读 · 0 评论 -
【深度学习-Day 12】从零认识神经网络:感知器原理、实现与局限性深度剖析
欢迎来到深度学习系列的第12篇文章!在前面的章节中,我们已经为深度学习之旅奠定了坚实的数学、编程和机器学习基础。我们了解了线性回归和逻辑回归等基本模型,并对模型训练的基本流程有了初步认识。从本篇开始,我们将正式踏入神经网络的核心领域。神经网络是当前人工智能浪潮中最耀眼的技术之一,而理解其最基本的构建单元——感知器(Perceptron)——是至关重要的一步。原创 2025-05-17 19:00:00 · 1266 阅读 · 0 评论 -
【深度学习-Day 11】Scikit-learn实战:手把手教你完成鸢尾花分类项目
我们将通过一个经典且非常适合初学者的项目——**鸢尾花(Iris)分类**——来完成我们的第一个完整的机器学习项目。我们将使用强大的Python库 Scikit-learn 来简化开发流程,从数据加载、预处理,到模型训练、预测和评估,一步步带你体验机器学习的完整生命周期。原创 2025-05-15 19:00:00 · 1008 阅读 · 0 评论 -
【深度学习-Day 10】机器学习基石:从零入门线性回归与逻辑回归
在上一篇【深度学习-Day 9】机器学习基础(一) - 核心概念中,我们初步踏入了机器学习的大门,了解了其基本定义、分类以及像特征、标签、数据集划分等核心术语。今天,我们将继续深入,学习两种基础且非常重要的机器学习模型:**线性回归 (Linear Regression)** 和 **逻辑回归 (Logistic Regression)**。理解它们不仅能帮助我们解决实际问题,更是我们后续理解复杂神经网络如何“学习”的关键一步。原创 2025-05-13 19:00:00 · 991 阅读 · 0 评论 -
【深度学习-Day 9】机器学习核心概念入门:监督、无监督与强化学习全解析
本文将系统地介绍机器学习的核心概念,包括它是什么、主要的学习范式(监督学习、无监督学习、强化学习)、数据中的基本元素(特征与标签),以及至关重要的数据集划分策略(训练集、验证集、测试集)。无论您是编程新手还是有一定经验的开发者,本文都将力求以专业精准且通俗易懂的方式,为您揭开机器学习的神秘面纱。原创 2025-05-12 19:00:00 · 1180 阅读 · 0 评论 -
【深度学习-Day 8】让数据说话:Python 可视化双雄 Matplotlib 与 Seaborn 教程
在深度学习的征途中,我们不仅需要与冰冷的数字和复杂的算法打交道,更需要一种直观的方式来理解数据、洞察模型行为并有效地展示研究成果。“一图胜千言”,数据可视化正是连接数据与洞察的桥梁。它能够帮助我们发现隐藏在数据背后的模式、趋势和异常点,从而更好地指导我们的数据分析和模型调优工作。在 Python 的生态系统中,Matplotlib 和 Seaborn 是两个功能强大且广受欢迎的数据可视化库。Matplotlib 提供了灵活的底层绘图接口,几乎可以绘制任何类型的静态、动态、交互式图表。原创 2025-05-10 19:00:00 · 1200 阅读 · 4 评论 -
【深度学习-Day 7】精通Pandas:从Series、DataFrame入门到数据清洗实战
在深度学习的征途中,数据扮演着至关重要的角色。正所谓“工欲善其事,必先利其器”,要高效地处理和分析数据,一个强大的工具必不可少。Pandas 就是这样一把在 Python 数据科学生态系统中熠熠生辉的“瑞士军刀”。它提供了高性能、易用的数据结构和数据分析工具,使得我们能够轻松应对各种结构化数据的挑战。无论是数据清洗、转换、分析还是可视化前的准备,Pandas 都能提供强有力的支持。原创 2025-05-07 19:15:00 · 1176 阅读 · 0 评论 -
【深度学习-Day 6】掌握 NumPy:ndarray 创建、索引、运算与性能优化指南
欢迎来到深度学习之旅的第六天!在前几天的学习中,我们已经了解了深度学习的基本概念,并掌握了 Python 语言的基础(或者复习了它)。从今天开始,我们将接触到数据科学领域至关重要的工具库。而 NumPy (Numerical Python) 无疑是其中最基础、最核心的一个。为什么 NumPy 如此重要?想象一下,深度学习本质上就是对大量的数字(如图像像素、词向量、模型参数)进行复杂的数学运算。NumPy 提供了一个强大的 N 维数组对象ndarray,以及一系列用于高效处理这些数组的函数。原创 2025-05-05 20:30:00 · 1360 阅读 · 0 评论 -
【深度学习-Day 5】Python 快速入门:深度学习的“瑞士军刀”实战指南
欢迎来到深度学习系列的第五天!在之前的文章中,我们已经探讨了深度学习的基本概念和所需的数学基础。今天,我们将聚焦于实现这一切的强大工具——Python 编程语言。Python 因其简洁的语法、庞大的库生态和活跃的社区,已成为数据科学和深度学习领域的首选语言,被誉为该领域的“瑞士军刀”。无论你是编程新手,还是希望系统了解 Python 在深度学习中应用的开发者,本文都将为你提供一个清晰、实用的快速入门指南,为你后续学习 TensorFlow、PyTorch 等深度学习框架扫清障碍。原创 2025-05-04 19:15:00 · 991 阅读 · 0 评论 -
【深度学习-Day 4】掌握深度学习的“概率”视角:基础概念与应用解析
大家好,欢迎来到深度学习之旅的第四天!在前两篇数学基础文章中,我们探讨了线性代数的核心概念(Day 2)和微积分的关键知识(Day 3)。今天,我们将聚焦于深度学习的另一大数学支柱——概率与统计。你可能会问,为什么深度学习需要概率统计?简单来说,深度学习本质上是在处理不确定性。我们从数据中学习模式,而数据本身往往带有噪声和随机性;我们建立模型进行预测,而预测结果本身也常常是以概率的形式给出;我们评估模型的好坏,更离不开统计学的工具。原创 2025-05-03 19:00:00 · 1751 阅读 · 0 评论 -
【深度学习-Day 3】搞懂微积分关键:导数、偏导数、链式法则与梯度详解
大家好!欢迎来到深度学习系列专栏的第三篇文章。在上一篇【深度学习-Day 2】中,我们一起学习了线性代数的核心知识,掌握了处理数据的基本“砖块”——向量和矩阵。今天,我们将继续深入数学基础的另一大支柱——微积分。你可能会问,为什么深度学习也需要微积分?简单来说,深度学习模型的训练过程本质上是一个优化问题:我们希望找到一组模型参数,使得模型的预测误差(损失)最小。而微积分,特别是其中的导数和梯度概念,正是帮助我们找到这个最小值的关键工具。此外,神经网络中误差反向传播的核心机制,也离不开微积分中的链式法则。原创 2025-05-02 09:15:00 · 1283 阅读 · 0 评论 -
【深度学习-Day 2】图解线性代数:从标量到张量,理解深度学习的数据表示与运算
大家好!欢迎来到深度学习系列博客的第二篇。在上一篇中,我们初步了解了深度学习是什么以及它的重要性。从今天开始,我们将深入学习构建深度学习模型所必需的基础知识。而其中,线性代数扮演着至关重要的角色。你可能会问:“为什么需要线性代数?” 简单来说,深度学习本质上是对数据进行一系列复杂的变换和计算。而线性代数正是描述和操作这些数据(通常以数组形式存在)的强大数学语言。无论是输入数据(如图像像素、文本词语)、模型参数(权重和偏置),还是中间计算结果,都可以用线性代数中的概念(向量、矩阵、张量)来表示。原创 2025-05-01 09:22:07 · 1523 阅读 · 0 评论