
概率论
文章平均质量分 66
你回到了你的家
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
4.3大数定律
1 伯努利大数定律定理 4.3.1 伯努利大数定律 设sns_nsn为n重伯努利试验中事件A发生的次数,p为原创 2022-05-05 20:17:55 · 398 阅读 · 0 评论 -
3.1 多维随机变量及其联合分布
1 多维随机变量2 联合分布函数3 联合分布列4 联合密度函数待补充 156原创 2022-05-03 21:48:17 · 955 阅读 · 0 评论 -
2.1 随机变量及其分布
1 随机变量的概念若此产品的不合格率为ppp,则XXX取各种值的概率可列表如下:X0123p(1−p)3(1-p)^3(1−p)33p(1−p)23p(1-p)^23p(1−p)23p2(1−p)3p^2(1-p)3p2(1−p)p3p^3p3下面给出随机变量的一般定义。定义2.1.1 定义在样本空间Ω\OmegaΩ上的实值函数X=X(ω)X=X(\omega)X=X(ω)称为随机变量,常用大写字母X,Y,ZX,Y,ZX,Y,Z等表示随机变量,其取值用原创 2022-05-03 21:39:50 · 951 阅读 · 0 评论 -
3.4多维随机变量的特征数
类似于一维随机变量的特征数,多维随机变量也有特征数,除了各个分量的期望、方差、标准差以外,还有两个随机变量间的关联程度,即协方差与相关系数,这是一种反映两个随机变量相依关系的特征数,需要特别注意。1 多维随机变量函数的数学期望为了简单起见,我们用二维随机变量叙述此定理,而对n维随机变量的结论是类似的。定理3.4.1 若二维随机变量(X,Y)(X,Y)(X,Y)的分布用联合分布列P(X=xi,Y=yi)P(X=x_i,Y=y_i)P(X=xi,Y=yi)或用联合密度函数p(x,y)p(x,y)p(原创 2022-05-02 22:25:17 · 2340 阅读 · 0 评论 -
1随机事件与概率
1 随机事件及其运算1.1 随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象,随机现象有两个特点:结果不止一个哪一个结果出现,人们事先并不知道1.2 样本空间随机现象的一切可能基本结果组成的集合称为样本空间,记为Ω={ω}\Omega=\{\omega\}Ω={ω},其中ω\omegaω表示基本结果,又称为样本点。需要注意的是:样本空间中的元素可以是数也可以不是数样本空间至少有两个样本点我们将样本点的个数为有限个或可列个的称为离散样本空间。将样本点的个数为不可列或无限原创 2022-03-02 11:17:50 · 536 阅读 · 0 评论 -
概率论:假设检验、极大似然估计、无偏估计
一、假设检验注意样本S的分母代表自由度,因此分母为4原创 2020-06-19 13:23:26 · 3266 阅读 · 0 评论 -
概率论:协方差矩阵
一、协方差矩阵1.1 从方差/协方差到协方差矩阵根据方差的定义,给定ddd个随机变量xk,i=1,2,...,dx_k,i=1,2,...,dxk,i=1,2,...,d,则这些随机变量的方差为:σ(xk,xk)=1n−1∑i=in(xki−x‾k)2\sigma(x_k,x_k)={1\over n-1}\sum_{i=i}^n(x_{ki}-\overline{x}_k)^2σ(xk,xk)=n−11∑i=in(xki−xk)2其中xkix_{ki}xki表示随机变量xkx_kx原创 2020-06-19 08:14:35 · 3030 阅读 · 0 评论 -
概率论:集合、假设检验、分布、矩阵、估计
公式P(A‾B‾)=1−P(A)−P(B)+P(AB)P(\overline{A} \overline{B})=1-P(A)-P(B)+P(AB)P(AB)=1−P(A)−P(B)+P(AB)原创 2020-06-19 08:08:26 · 725 阅读 · 0 评论 -
概率论:多元高斯分布
一、多元高斯分布:一元高斯分布的概率密度函数如下所示:p(x)=1σ2π⋅e−12(x−μσ)2(1)p(x)={1\over\sigma\sqrt{2\pi}}\centerdot e^{-{1\over2}({x-\mu\over\sigma})^2}\quad\quad\quad(1)p(x)=σ2π1⋅e−21(σx−μ)2(1)而如果我们对随机变量X进行标准化,用Z=X−μσZ={X-\mu\over\sigma}Z=σX−μ对上式进行换元,可得:x(z)=z⋅σ+μx(z)=z原创 2020-06-15 01:36:33 · 1416 阅读 · 0 评论 -
概率论:中心极限定理、马尔科夫不等式、切比雪夫不等式、大数定理
一、中心极限定理1.1 独立同分布的中心极限定理1.1.1 定理设X1,X2,...,Xn为相互独立、服从同一分布的随机变量序列,且E(Xi)=μ,D(Xi)=σ2≠0(i=1,2,...n),则对于任意x,有:设X_1,X_2,...,X_n为相互独立、服从同一分布的随机变量序列,且E(X_i)=\mu,D(X_i)=\sigma^2\ne0(i=1,2,...n),则对于任意x,有:设X1,X2,...,Xn为相互独立、服从同一分布的随机变量序列,且E(Xi)=μ,D(Xi)=σ2=原创 2020-06-12 12:32:49 · 3422 阅读 · 0 评论 -
概率论:均值、标准差、方差、协方差、矩
一、均值离散情况:X‾=∑i=1nXin\overline{X}={\sum_{i=1}^nX_i\over n}X=n∑i=1nXi二、标准差S=∑i=1n(xi−X‾)2n−1S=\sqrt{{\sum_{i=1}^n(x_i-\overline{X})^2\over n-1}}S=n−1∑i=1n(xi−X)2三、方差S2=∑i=1n(xi−X‾)2n−1S^2={\sum_{i=1}^n(x_i-\overline{X})^2\over n-1}S2=n−1∑i=1n(x原创 2020-06-10 12:19:53 · 8028 阅读 · 0 评论