摘要
随着医疗数据的快速增长,数据孤岛化、标准化不足及AI模型更新滞后等问题严重制约了医疗人工智能(AI)的广泛应用。本研究提出了一种基于向量数据库的矩阵化智能基础设施建设方案,旨在通过多模态数据统一向量空间、优化分层可导航小世界(HNSW)索引结构,以及引入动态矩阵更新机制,实现医疗数据的跨模态高效检索与联合分析。在覆盖中国3省6家医疗机构的临床验证中,该架构显著提升了医学影像检索效率(47%,p<0.01),缩短了模型迭代周期(60%),并完全满足GDPR和HIPAA的合规要求。本研究为医疗AI基础设施的标准化建设提供了可复用的技术框架,具有较高的理论和实践价值。
关键词:医疗人工智能;向量数据库;矩阵化架构;多模态数据;联邦学习;数据合规
一、引言
1.1 研究背景
医疗领域的数字化转型正在加速,全球医疗数据量预计到2025年将达到10ZB(Zettabytes)