Bottleneck

本文深入探讨深度学习中BottleneckLayer的概念,追溯其起源并详细解释如何通过1x1卷积核减少通道数,降低计算复杂度,特别是在ResNet架构中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中经常听闻Bottleneck Layer 或 Bottleneck Features ,亦或 Bottleneck Block,其虽然容易理解,其意思就是输入输出维度差距较大,就像一个瓶颈一样,上窄下宽亦或上宽下窄,然而其正儿八经的官方出处没有一个能说出其所以然来,下面本文将对Bottleneck Layer 或 Bottleneck Features ,亦或 Bottleneck Block追根溯源,使之对Bottleneck Layer 或 Bottleneck Features ,亦或 Bottleneck Block有一个全面的认识。

首先来看一篇关于深度神经网络的有效处理 的综述文章对Bottleneck Building Block的表述:“In order to reduce the number of weights, 1x1 filters are applied as a “bottleneck” to reduce the number of channels for each filter”,在这句话中,1x1 filters 最初的出处即"Network In Network",1x1 filters 可以起到一个改变输出维数(channels)的作用(elevation or dimensionality reduction)。下面来看一下ResNet对Bottleneck Building Block的表述:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值