大模型基本概念学习 - Checkpoint、PyTorch、 TensorFlow、Transformers、ModelScope


前言

之前学习的过程中我们的模型应用可以跑起来了,那么在这个过程中我们是按官方的demo来学习编写的,有些地方只会用,但是并没有深入理解。现在我们一起来学习一些大数据的基础概念,Checkpoint、PyTorch、 Transformers、ModelScope

一、checkpoint

在大模型(如深度学习模型)中,checkpoint 是指在训练过程中保存模型当前状态的快照。它通常包含模型的权重、优化器的状态以及其他训练相关的参数。这些 checkpoint 的主要作用如下:

  1. 保存中间结果:在长时间训练模型时,定期保存 checkpoint 以防止由于中断(如停电、计算机崩溃等)而丢失训练进度。这样可以从最近一次保存的 checkpoint 继续训练,而不必从头开始。

  2. 模型评估:在训练过程中,可能会定期对模型进行评估,使用 checkpoint 可以方便地在不同的时间点加载模型,并进行验证或测试。

  3. 实验管理:在进行模型调优和实验时,可以保存多个 checkpoint,以便回顾和比较不同实验条件下的模型性能。

  4. 部署:训练完成后,最终的 checkpoint 通常会被用来部署模型。在生产环境中,使用保存的 checkpoint 来进行推理和预测。

所以,我们下载使用的大模型通常就是一个 checkpoint。它包含了训练好的模型的参数和状态,用户可以直接加载并使用这些模型,而无需重新进行训练。这对于实际应用非常有用,尤其是当训练一个大型模型需要大量的计算资源和时间时。

具体来说,当你下载并使用一个预训练的大模型时,你通常会得到以下几种文件:

  1. 模型权重文件:这个文件保存了模型的参数(如神经网络的权重和偏置)。在 TensorFlow 中,这通常是 .ckpt 文件;在 PyTorch 中,这通常是 .pt.pth 文件。

  2. 模型配置文件:这个文件描述了模型的架构(如每一层的类型、层数、激活函数等)。在一些框架中,模型配置可能包含在 checkpoint 文件中,或者作为一个单独的 JSON 或 YAML 文件。

  3. 其他相关文件:一些模型可能还包含额外的信息,如训练过程中使用的词汇表(对于自然语言处理模型)、模型的超参数设置等。

二、TensorFlow

1. 简介

TensorFlow 是由 Google Brain 团队开发的开源深度学习框架。自 2015 年发布以来,它已经成为机器学习和深度学习社区中广泛使用的工具之一。TensorFlow 适用于从研究到生产的广泛应用场景,并支持多种编程语言。

2. 主要特点

1) 计算图(Computation Graph):TensorFlow 最初是以静态计算图为基础的,这意味着在模型执行之前,需要先定义整个计算图。这种方法在优化和部署方面有优势,但调试和开发速度较慢。

2) Eager Execution:自 TensorFlow 2.0 起,默认启用了 Eager Execution 模式,这种模式允许即刻运行操作,无需构建计算图,类似于 PyTorch 的动态计算图,大大简化了调试和开发。

3) 多语言支持:虽然主要使用 Python,但 TensorFlow 还支持 C++、Java、JavaScript、Go 等多种语言,特别是 TensorFlow.js 和 TensorFlow Lite,分别支持在浏览器和移动设备上运行模型。

4) 强大的生态系统:TensorFlow 拥有丰富的工具和库,如 TensorFlow Extended (TFX) 用于生产环境中的端到端机器学习平台,TensorFlow Lite 用于移动和嵌入式设备,TensorFlow.js 用于在浏览器中运行模型,Keras(现已集成到 TensorFlow 中)用于简化模型的构建和训练。

5) 广泛的社区和支持:TensorFlow 拥有庞大的用户社区和丰富的文档、教程和资源,提供了强大的社区支持。

3. 示例代码

以下是使用 TensorFlow 构建和训练一个简单的神经网络的示例:

import tensorflow as tf
from tensorflow.keras import layers, models

# 构建模型
model = models.Sequential()
model.add(layers.Dense(128, activation='relu', input_shape=(784,)))
model.add(layers.Dense(10, activation='softmax'))

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 加载数据
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train.reshape(-1, 784) / 255.0, x_test.reshape(-1, 784) / 255.0

# 训练模型
model.fit(x_train, y_train, epochs=5)

# 评估模型
model.evaluate(x_test, y_test)

三、 PyTorch

1. 简介

PyTorch 是由 Facebook 的人工智能研究团队开发的开源深度学习框架。自 2016 年发布以来,PyTorch 迅速获得了学术界和工业界的广泛认可和使用。PyTorch 以其易用性、灵活性和动态计算图的特性而著称。

2. 主要特点

1) 动态计算图(Dynamic Computation Graph):PyTorch 的计算图在运行时构建,这使得调试更加直观和方便。开发者可以使用标准的 Python 调试工具进行调试。

2) 简洁的 API:PyTorch 的 API 非常直观和易用,符合 Python 的编程风格,降低了学习门槛。

3) TorchScript:PyTorch 提供了 TorchScript 机制,可以将 PyTorch 模型转换为静态计算图,以便在生产环境中进行优化和部署。

4) 广泛的生态系统:PyTorch 拥有丰富的扩展库,如用于分布式训练的 PyTorch Lightning、用于图神经网络的 PyTorch Geometric、用于强化学习的 Stable Baselines3 等。

5) 强大的社区和支持:PyTorch 社区活跃,提供了丰富的教程、示例和文档资源,并且在学术界有广泛的应用。

3. 示例代码

以下是使用 PyTorch 构建和训练一个简单的神经网络的示例:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 数据加载和预处理
transform = transforms.Compose([transforms
非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值