keras深度学习实战(二)----深度卷积神经网络DCNN(1)

深度卷积神经网络

导语:

之前在MLP做数字识别时,我们将图片压扁成为一个一维向量,损失了原本的空间特性。那么,直接对图像进行处理,也就会得到一个巨大的矩阵,若给矩阵中的每个值都配一个权重,那么计算上会是相当复杂的。我们人在看图时有些地方是投机取巧的,我们不需要看到整张图片就可以一定程度上猜到这是什么,所以我们可以将图片分割,分块来处理(局部感受野)。既然图片模块化了,那么每块的权重也可以批量处理(共享权重和偏差)。还有一个是图片的像素降低实际对我们肉眼识别图像影响不大,所以图片中的一部分信息可简化(池化)。对于卷积网络,有三个要认识的要点:

  • 局部感受野
  • 共享权重和偏差
  • 池化(最大池化和平均池化)
卷积网络的示意图

与LeNet情况不同,用作类比参考

下面简述计算流程


假设图像矩阵如上所示,卷积核(权重矩阵)为
{ 1 0 0 1 } (2) \left\{ \begin{matrix} 1 & 0 \\ 0& 1 \\ \end{matrix} \right\} \tag{2} { 1001}(2)
并且步长为1,那么权值矩阵滑动后得到矩阵 M 6 ∗ 6 M_{6*6} M6

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值