深度卷积神经网络
导语:
之前在MLP做数字识别时,我们将图片压扁成为一个一维向量,损失了原本的空间特性。那么,直接对图像进行处理,也就会得到一个巨大的矩阵,若给矩阵中的每个值都配一个权重,那么计算上会是相当复杂的。我们人在看图时有些地方是投机取巧的,我们不需要看到整张图片就可以一定程度上猜到这是什么,所以我们可以将图片分割,分块来处理(局部感受野)。既然图片模块化了,那么每块的权重也可以批量处理(共享权重和偏差)。还有一个是图片的像素降低实际对我们肉眼识别图像影响不大,所以图片中的一部分信息可简化(池化)。对于卷积网络,有三个要认识的要点:
- 局部感受野
- 共享权重和偏差
- 池化(最大池化和平均池化)
卷积网络的示意图
下面简述计算流程
假设图像矩阵如上所示,卷积核(权重矩阵)为
{ 1 0 0 1 } (2) \left\{ \begin{matrix} 1 & 0 \\ 0& 1 \\ \end{matrix} \right\} \tag{2} {
1001}(2)
并且步长为1,那么权值矩阵滑动后得到矩阵 M 6 ∗ 6 M_{6*6} M6