基于进化规则库的多智能体系统实验探究
1. 引言
在当今复杂多变的环境中,多智能体系统(MAS)因其灵活性和适应性而备受关注。特别是在智能代理需要处理复杂、动态且不可访问的环境时,基于进化规则库(EEERB)的多智能体系统显得尤为重要。EEERB系统允许代理规则库随着代理经验的积累和与其他代理分享的信息而进化,从而提升系统的性能和适应性。
2. 实验背景
多智能体系统中,代理的行为决策依赖于一组规则,这些规则可以是固定的或进化的。对于静态环境,固定规则集是合适的;但对于大多数动态环境,进化规则集更为合适。规则集可以随着代理自身的经验以及从其他代理传递的知识而进化。代理的经验隐式地表示或编码在用于评估规则的强度函数中,用于使用遗传算法生成新规则的选择方案中,以及反映在考虑环境反馈的奖励方案中。
3. 实验设计
3.1 实验环境
实验在一个被墙包围的二维网格环境中进行,代理们需要探索散布在各处的指定物品。除了指定的物品或物品外,网格中可能有一块石头,它会阻挡探索路径。每个代理的目标是在一段时间内或周期性的轮次中尽可能快地找到尽可能多的指定物品。
3.2 初始规则库生成策略
实验中使用了两种不同的策略来生成初始规则库中的初始规则:
- 无初始规则 :规则库中没有初始规则。
- 基于其他代理经验的初始规则 :存在一个初始的规则集,这些规则是基于其他代理的经验生成的,从公共共享板上获得的经验。
这两种策略分别代表了从零