第五天——贪心算法——射气球

1.题目

 

有一些球形气球贴在一个表示 XY 平面的平坦墙壁上。气球用一个二维整数数组 points 表示,其中 points[i] = [xstart, xend] 表示第 i 个气球的水平直径范围从 xstartxend。你并不知道这些气球的具体 y 坐标。

可以从 x 轴上的不同位置垂直向上(即 y 轴正方向)射出箭。如果某一箭的 x 坐标 x 满足 xstart <= x <= xend,则这支箭可以射爆对应的气球。射出的箭没有数量限制,并且一旦射出,箭会一直向上飞行,可以射穿沿途的所有气球。

给出气球的二维数组,求最少需要多少支箭射爆所有气球?

2.分析

这实际上是一个区间覆盖问题(Interval Covering Problem),类似于:

  • 经典例题:给定多个区间,如何用最少的点覆盖所有区间?(每个区间至少包含一个点)
  • 解法思路:
    • 贪心算法:按区间右端点排序,尽量在右端点射箭,以覆盖尽可能多的区间。

 

解题步骤

  1. 排序
    • 将所有区间按照 xend(右端点)升序排序。
  2. 贪心选择
    • 初始化 count = 0(记录需要的箭的数量),并设 last_shot = -∞(上一次射箭的位置)。
    • 遍历排序后的区间:
    • 如果当前区间的 xstart > last_shot(说明无法被上一箭覆盖):
    • count += 1,并更新 last_shot = xend
    • 射一支新箭,位置选在当前区间的 xend(保证覆盖最多的区间)。
  3. 返回 count
    • 最终 count 就是最少需要的箭数。

3. 完整代码

def findMinArrowShots(points):
    if not points:
        return 0
    
    # 按 xend 排序
    points.sort(key=lambda x: x[1])
    
    count = 1
    last_shot = points[0][1]   # 第一箭射在第一个气球的右端点
    
    for start, end in points:
        # 如果当前气球未被上一箭覆盖,则射新箭
        if start > last_shot:
            # 需要新射一箭
            count += 1
            last_shot = end  
    return count
print(findMinArrowShots([[10,16],[2,8],[1,6],[7,12]]))  # Output: 2

解释

  1. 输入 [[10,16],[2,8],[1,6],[7,12]]

    • 排序后 [[1,6], [2,8], [7,12], [10,16]]
    • 第一箭射 6(覆盖 [1,6],[2,8]
    • 第二箭射 12(覆盖 [7,12],[10,16]
    • 最少需 2 箭 ✅

 

<think>好的,我需要帮助用户了解贪心算法的设计与分析,并提供实验示例代码。首先,用户提到了他们可能需要完成相关实验任务,所以应该从基础开始,逐步引导。 首先,我应该解释贪心算法的基本概念,确保用户理解其核心思想,比如局部最优和全局最优的关系。然后,可以举几个经典例子,比如活动选择问题、霍夫曼编码或背包问题,这样用户能更好地理解应用场景。 接下来,用户需要具体的实验示例代码。考虑到贪心算法常见的例子,活动选择问题比较适合,因为它直观且代码相对简单。我需要用Python编写一个例子,注意代码的结构和注释,方便用户理解。 然后,实验分析部分需要说明时间复杂度和空间复杂度,帮助用户评估算法性能。同时,要提到贪心算法的优缺点,比如高效但不一定全局最优,这样他们在实验报告中可以进行分析。 用户提供的引用中,引用[1]提到了实验要求和步骤,引用[3]提到了开发环境,所以代码示例需要兼容常见的IDE,比如VS Code或Dev C++。不过Python代码在这些环境中都能运行,应该没问题。 最后,生成相关问题时要围绕贪心算法的设计、分析、优化和应用,这样用户能进一步深入学习和研究。确保问题覆盖理论、实际应用以及与其他算法的比较,比如动态规划。 检查一下是否遵循了系统级指令:行内公式用$...$,独立公式单独成段,正确的中文回答,引用标识的位置正确。例如,在提到贪心算法适用条件时引用[^1],在实验步骤部分引用[^3]的IDE信息。 总结步骤:介绍概念,提供示例代码,分析实验结果,列举相关问题,并正确引用资料。确保内容结构清晰,代码正确可运行,分析到位,帮助用户完成实验任务。</think>### 贪心算法设计与分析实验示例 #### 一、贪心算法设计核心思想 贪心算法通过**每一步选择当前状态下的局部最优解**,最终期望得到全局最优解。其设计需要满足两个条件: 1. **贪心选择性质**:每一步的局部最优解能推导出全局最优解 2. **最优子结构**:问题的最优解包含子问题的最优解 #### 二、经典实验案例:活动选择问题 **问题描述**:从$n$个活动集合中选出互不冲突的最大活动子集,每个活动有开始时间$s_i$和结束时间$f_i$。 **贪心策略**:优先选择**结束时间最早**的活动 ##### Python实现代码 ```python def greedy_activity_selector(s, f): n = len(s) selected = [0] # 第一个活动默认选中 k = 0 for m in range(1, n): if s[m] >= f[k]: # 检查时间是否冲突 selected.append(m) k = m return selected # 示例输入(已按结束时间排序) s = [1, 3, 0, 5, 8, 5] f = [2, 4, 6, 7, 9, 9] print("选择的活动编号:", greedy_activity_selector(s, f)) # 输出 [0, 1, 3, 4] ``` #### 三、实验分析要点 1. **时间复杂度**:$O(n\log n)$(主要来自排序操作) 2. **空间复杂度**:$O(n)$ 3. **正确性验证**:可通过数学归纳法证明贪心选择的有效性 4. **实验对比**:与动态规划解法对比时间效率[^2] #### 四、贪心算法适用条件 | 条件类型 | 具体要求 | |---------|----------| | 贪心选择性 | 可通过局部最优达到全局最优 | | 最优子结构 | 子问题最优解能组合成原问题解 | #### 五、实验环境建议 推荐使用VS Code或Code::Blocks进行调试(参考引用),可通过断点调试观察活动选择过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穿梭的编织者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值