完全解读布隆过滤器



布隆过滤器(Bloom Filter)是 1970 年由布隆提出的,是一种非常节省空间的概率数据结构,运行速度快,占用内存小。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。主要用于判断一个元素是否在一个集合中。主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等。

优点

●存储空间和插入 / 查询时间都是常数O(k)
●支持海量数据场景下高效率判断元素是否存在
●存储空间小,不存储数据本身,而是存储hash结果取模运算后的位标记

缺点

●无法删除,因为可能多个元素通过哈希后,可能会产生hash碰撞,映射到布隆过滤器的同一个位置。删除该位置后,可能影响其他元素
●误判,由于存在hash碰撞,不同的元素经过哈希后可能映射到同一个位置,一旦产生碰撞,会被误判存在
●碰撞概率,让随着元素越来越大,在容量限制下,布隆过滤器被使用的位置就会越来越多,误判的几率也会越来越大

特点

根据布隆过滤器的特点可以知道

●判断如果某个元素存在,由于存在误判,这个元素不一定是存在的
●判断如果某个元素不存在,那这个元素一定不存在

原理

结构


布隆过滤器底层就是一个二进制的位数组,在初始状态,所有位置的位都是0

添加

●使用哈希函数对元素进行哈希计算得到索引值,将索引值对应的数组下标所在的值设置为1
●如果是多个哈希函数则进行上述同样的操作

查询

●对要查询的元素同样使用哈希函数进行计算,如果存在多个哈希函数则得到多个索引值
●判断这些索引值对应的数组下标的值是否都为1,如果是,则判断这个元素为存在。如果这些下标的值只要有一个是0,那么判断这个元素为不存在

流程图

容量估算

当我们知道了布隆过滤器的原理后,还剩下个问题,就是要估算出布隆过滤器所需要的容量,以便于配置服务器的容量

布隆过滤器的容量是和产生的碰撞概率有关的,通过布隆过滤器的原理能知道,容量和碰撞概率的关系就是相斥的

要想碰撞概率小,容量肯定就要大。

要想容量小,碰撞概率肯定就要大

公式

那么具体要如何估算呢,我们可以根据公式要进行计算:

m可能算到小数,那就向上取整

参数解释

  • n 元素的样本量
  • p 碰撞率
  • m 布隆过滤器占用比特数

进行计算

以用户注册业务为例,我们需要计算 n,也就是用户量需要多少

2023年末2024年初,常住人口140967万人,这里我们直接取整为14亿,假设这14亿人所有人都是大麦网的用户,用这个数字作为布隆过滤器的容量来说,以目前国内的用户增长量来说,五年内绝对是没有任何问题的

至于碰撞率 p 我们取一个比较精确的值,0.2%

n = 14亿p = 0.2% 带入公式中,计算出

这时 m 的单位是bit,如果换成GB单位, 则

依赖

<dependency>
    <groupId>com.example</groupId>
    <artifactId>damai-bloom-filter-framework</artifactId>
    <version>${revision}</version>
</dependency>

结构

属性配置
@Data
@ConfigurationProperties(prefix = BloomFilterProperties.PREFIX)
public class BloomFilterProperties {

    public static final String PREFIX = "bloom-filter";
    /**
    * 布隆过滤器名字
    */
    private String name;
    /**
    * 布隆过滤器的容量
    */
    private Long expectedInsertions = 20000L;
    /**
    * 布隆过滤器碰撞率
    */
    private Double falseProbability = 0.01D;
}
自动装配
@EnableConfigurationProperties(BloomFilterProperties.class)
public class BloomFilterAutoConfiguration {
    
    /**
     * 布隆过滤器
     */
    @Bean
    public BloomFilterHandler rBloomFilterUtil(RedissonClient redissonClient, BloomFilterProperties bloomFilterProperties) {
        return new BloomFilterHandler(redissonClient, bloomFilterProperties);
    }
}
布隆过滤器操作
public class BloomFilterHandler {
    
    private final RBloomFilter<String> cachePenetrationBloomFilter;
    
    public BloomFilterHandler(RedissonClient redissonClient, BloomFilterProperties bloomFilterProperties){
        RBloomFilter<String> cachePenetrationBloomFilter = redissonClient.getBloomFilter(bloomFilterProperties.getName());
        cachePenetrationBloomFilter.tryInit(bloomFilterProperties.getExpectedInsertions(), bloomFilterProperties.getFalseProbability());
        this.cachePenetrationBloomFilter = cachePenetrationBloomFilter;
    }
    
    public boolean add(String data) {
        return cachePenetrationBloomFilter.add(data);
    }
    
    public boolean contains(String data) {
        return cachePenetrationBloomFilter.contains(data);
    }
    
    public long getExpectedInsertions() {
        return cachePenetrationBloomFilter.getExpectedInsertions();
    }
    
    public double getFalseProbability() {
        return cachePenetrationBloomFilter.getFalseProbability();
    }
    
    public long getSize() {
        return cachePenetrationBloomFilter.getSize();
    }
    
    public int getHashIterations() {
        return cachePenetrationBloomFilter.getHashIterations();
    }
    
    public long count() {
        return cachePenetrationBloomFilter.count();
    }
}

使用

在用户注册的流程中,使用了布隆过滤器判断用户手机号是否存在,下面来分析使用过程

redis配置

spring:
  data:
    redis:
      database: 0
      host: 127.0.0.1
      port: 6379
      password: 123456
      timeout: 3000

布隆过滤器配置

bloom-filter:
  name: user-register-bloom-filter
  expectedInsertions: 1000
  falseProbability: 0.01

 service.UserService

public void doExist(String mobile){
    boolean contains = bloomFilterHandler.contains(mobile);
    if (contains) {
        LambdaQueryWrapper<UserMobile> queryWrapper = Wrappers.lambdaQuery(UserMobile.class)
                .eq(UserMobile::getMobile, mobile);
        UserMobile userMobile = userMobileMapper.selectOne(queryWrapper);
        if (Objects.nonNull(userMobile)) {
            throw new DaMaiFrameException(BaseCode.USER_EXIST);
        }
    }
}
  1. 判断用户手机号在布隆过滤器中是否存在
  2. 如果判断存在的话,由于布隆过滤器有碰撞率,则需要在数据库中再次判断
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值