数据集的训练集和测试集划分

本文介绍了数据集的训练集和测试集划分方法,包括留出法、交叉验证法和自助法。留出法通常将数据分为2/3至4/5作为训练集,其余为测试集;交叉验证法通过k折划分数据,进行多次实验评估;自助法则在数据量小的情况下使用,但可能导致样本分布变化。测试集至少应包含30个样例,并保持数据分布一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集的训练集和测试集划分

留出法(hold-out)

留出法,直接将数据集DDD划分为两个互斥的集合,其中一个集合作为训练集SSS,另一个作为测试集TTT,一般做法是将2/3~4/5的样本作为训练集,其余部分作为测试集;

在使用留出法时,一般采用多次随即划分、重复进行实验评估后,取平均值作为留出法的评估结果。

交叉验证法(cross validation)

交叉验证法,或kkk折交叉验证法(k-fold cross validation),先将数据集DDD划分为大小相似的​kkk

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值