Faster RCNN训练过程、训练结果展示

本文详细介绍了FasterRCNN的目标检测流程,并对比了其与YOLOv3的训练结果。经过分数过滤优化,FasterRCNN的检测效果显著提升。文章提供了训练过程及代码解析,探讨了调参对结果的影响,并指出实际业务场景中还需进一步比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Faster RCNN

目标检测有2种,一种是one stage目标检测,比如YOLO,SSD,Retina-Net;另外一种是two stage,比如RCNN家族,SPP net等。

YOLO v3项目文章:

https://blog.csdn.net/kui9702/article/details/122954209

https://blog.csdn.net/kui9702/article/details/123140249

https://blog.csdn.net/kui9702/article/details/123620597

https://blog.csdn.net/kui9702/article/details/123696635

本章是关于RCNN 家族成员:Faster RCNN。对于它的介绍有很多很好的文章:

https://zhuanlan.zhihu.com/p/31426458

这篇只写一些Faster RCNN的过程、训练结果,想要看代码注释可以关注我的另外一篇:

https://blog.csdn.net/kui9702/article/details/124074650

Faster RCNN 简单流程

image-20220410230126289

训练结果,训练代码可以在我上面提供的代码解析里获取,这里的结果与之前yolo v3实战进行对比

image-20220410231559269

image-20220410231638314

image-20220410231707564

从结果上看(左边是Faster RCNN,右边是yolo v3),Faster RCNN比yolo v3看起来好一些,但是有较多错捡,之后调参还有花费很多时间(比如分数过滤,迁移训练,调整超参数等等,有时间调整后再发新的结果)。这并不是实际的业务场景,具体的话还得看实际业务场景比较之后才能看出来(YOLO 还没用上yolo v5)

-----------------20220411-----------------
在昨天的基础上添加分数过滤,效果比之前好了很多
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kui9702

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值