基于阿里云PAI部署LLaMA Factory 完成Llama3低代码微调和部署

一、引言

阿里云人工智能平台 PAI 提供了面向开发者与企业的深度学习工程平台,其中交互 式建模 PAI-DSW 集成了 Jupyter 等多种云端开发环境,提供丰富的计算资源与镜像环 境,实现开箱即用的高效开发模式。LLaMA Factory 则是一款开源低代码大模型微调框 架,集成了业界最广泛使用的微调技术,支持通过 Web UI 界面零代码微调大模型,目前 已经成为开源社区内最受欢迎的微调框架,GitHub 星标超过 2 万。本教程将基于 Meta AI 开源的 Llama-3 8B 模型,介绍如何使用 PAI 平台及 LLaMA Factory 训练框架完成模 型的中文化与角色扮演微调和评估。

PAI 文档:https://help.aliyun.com/zh/pai/user-guide/getting-started/

LLaMA Factory 开源地址:https://github.com/hiyouga/LLaMA-Factory

二、创建 PAI 实例

2.1 开通 PAI 并创建工作空间

如果您是首次使用 PAI 平台,可以先进入的产品试用页面:阿里云免费试用 - 阿里云,选择PAI-DSW试用点击立即试用,这样就可以有3个月的免费试用期限啦,领取使用就后可以点击前往默认工作空间。

2.2 创建 DSW 实例

进入工作空间后,在左侧选择模型开发与训练-交互式建模,点击新建实例。

填写实例名称,在资源配额中选择GPU规格,这里推荐选择显存24GB的A10 GPU, 即 ecs.gn7i-c8g1.2xlarge 规格

存储配置保持默认,选择官方镜像中的 modelscope:1.14.0-pytorch2.1.2-gpupy310-cu121-ubuntu22.04 镜像,点击下一步,检查信息无误后,点击创建实例

三、安装 L

### 如何在阿里云平台上部署 LLaMA 模型 #### 创建并配置PAI平台实例 为了顺利运行LLaMA模型,在阿里云上需先获取必要的计算资源。这可以通过申请阿里云提供的免费试用资源来达成,这些资源足以支撑起初步探索实验的需求[^1]。 #### 使用ModelScope解决模型下载难题 鉴于HuggingFace对于中国大陆用户的访问限制以及阿里云自带仓库可能存在的下载困难情况,推荐采用ModelScope作为替代方案来进行模型文件的获取工作。具体操作可以参照相关项目中的说明文档执行克隆命令以获得所需的代码库及其依赖项[^3]。 ```bash git clone https://github.com/CrazyBoyM/llama3-Chinese-chat --depth 1 git lfs clone https://www.modelscope.cn/baicai003/Llama3-Chinese_v2.git ``` #### 环境准备与安装必要软件包 确保所选实例具备适合深度学习任务处理能力之后,接下来要做的就是构建合适的虚拟环境,并按照官方指导手册逐步引入Python解释器以及其他必备工具链;与此同时也要注意调整好CUDA版本号使之匹配硬件特性从而保障后续训练过程稳定流畅[^4]。 #### 应用LLaMA Factory简化微调流程 借助于LLaMA Factory这一强大的辅助工具集,即使是没有深厚编程背景的人也能轻松完成针对特定应用场景下的参数优化作业——只需遵循其内置向导提示即可快速启动自定义化改造计划。此过程中特别值得一提的是该套件所提供的图形界面支持功能极大地方便了非技术人员参与进来共同推进项目进展[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值