汇总平均数/比值的坑

文章探讨了在统计平均车均单时遇到的问题,指出简单的平均数加总可能会导致错误结果。通过A、B两个城市的案例,说明正确计算全国车均单的方法应为总订单数除以总车辆数。同时,提到了在处理带有异常标签订单的数据时,如何巧妙利用`count(distinct)`来避免嵌套查询,并强调在计算时要特别注意条件的筛选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A城市:每天车总订单100(total_ord),一共20个车(total_vid),因此每天的车均单是5(avg_ord)

B城市:每天车总订单300,一共30个车,因此每天的车均单是10

在计算全国(假设只有A+B两个城市)

简单的车均单加总处以2即(10+5)/2=7.5,对应sql里面avg(avg_ord)

但是分开算真实的是:(100+300)/(20+30)=8,对应sql的sum(total_ord)/sum(total_vid)

所以但凡设计到平均数或者比值的时候,再加总看整体的时候,一定要注意

这里举个例子

v_id代表车id

order_id代表订单id

每个车会有多个订单

abnormal_flag代表这个订单有异常标签

create table avgtable(
city_id varchar(15) not null,
v_id int not null,
order_id int not null,
abnomal_flag int not null,
ptime datetime not null
);
insert into avgtable values('A',1,1001,0,'2019-07-01 10:00:00');
insert into avgtable values('A',1,1002,1,'2019-07-01 11:00:00');
insert into avgtable values('A',1,1003,1,'2019-07-01 12:00:00');
insert into avgtable values('A',1,1004,0,'2019-07-01 13:00:00');
insert into avgtable values('A',2,1005,0,'2019-07-01 10:00:00');
insert into avgtable values('A',2,1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值